The carbon module provides carbon density information for different land types.
Description | Unit | A | |
---|---|---|---|
pm_climate_class (j, clcl) |
Koeppen-Geiger climate classification on the simulation cluster level | \(1\) | x |
sm_fix_cc | year until which all parameters affected by cc are fixed to historical values | \(year\) | x |
vm_carbon_stock (j, land, c_pools, stockType) |
Carbon stock in vegetation soil and litter for different land types | \(10^6 tC\) | x |
vm_emissions_reg (i, emis_source, pollutants) |
Regional emissions by source and gas after technical mitigation N CH4 C | \(Tg/yr\) | x |
Description | Unit | |
---|---|---|
fm_carbon_density (t_all, j, land, c_pools) |
LPJmL carbon density for land and carbon pools | \(tC/ha\) |
pm_carbon_density_ac (t_all, j, ac, ag_pools) |
Above ground natveg carbon density for age classes and carbon pools | \(tC/ha\) |
pm_carbon_density_ac_forestry (t_all, j, ac, ag_pools) |
Above ground plantation carbon density for age classes and carbon pools | \(tC/ha\) |
This realization provides carbon density information on cellular level to all land modules (30_crop, 31_past, 32_forestry, 34_urban and 35_natveg). The realization also provides carbon density for different age-classes, based on a chapman-richards volume growth model, to the land modules 32_forestry and 35_natveg (Humpenöder et al. 2014, and @braakhekke_modelling_2019).
Actual CO2 emissions are calculated based on changes in carbon stocks between timesteps in the interface vm_carbon_stock
.
\[\begin{multline*} vm\_emissions\_reg(i2,emis\_oneoff,"co2\_c") = \sum_{cell(i2,j2),emis\_land(emis\_oneoff,land,c\_pools)}\left(\frac{ \left(vm\_carbon\_stock.l(j2,land,c\_pools,"actual") - vm\_carbon\_stock(j2,land,c\_pools,"actual")\right)}{m\_timestep\_length}\right) \end{multline*}\]
Limitations There are no known limitations.
Description | Unit | A | |
---|---|---|---|
f52_growth_par (clcl, chap_par, forest_type) |
Parameters for chapman-richards equation | \(1\) | x |
f52_land_carbon_sink (t_all, i, rcp52) |
Land carbon sink adjustment factors from Grassi et al 2021 | \(GtCO2/year\) | x |
i52_land_carbon_sink (t_all, i) |
Land carbon sink adjustment factors from Grassi et al 2021 | \(GtCO2/year\) | x |
pc52_carbon_density_start (t_all, j, ag_pools) |
Above ground carbon density for new land in other land pool | \(tC/ha\) | x |
q52_emis_co2_actual (i, emis_oneoff) |
Calculation of annual CO2 emissions | \(Tg/yr\) | x |
description | |
---|---|
ac | Age classes |
ag_pools(c_pools) | Above ground carbon pools |
age | Population age groups |
c_pools | Carbon pools |
cell(i, j) | number of LPJ cells per region i |
chap_par | Chapman-richards parameters |
clcl | climate classification types |
emis_land(emis_oneoff, land, c_pools) | Mapping between land and carbon pools |
emis_oneoff(emis_source) | oneoff emission sources |
emis_source | Emission sources |
forest_type | forest type |
i | all economic regions |
i2(i) | World regions (dynamic set) |
j | number of LPJ cells |
j2(j) | Spatial Clusters (dynamic set) |
k(kall) | Primary products |
land | Land pools |
pollutants(pollutants_all) | subset of pollutants_all that can be taxed |
rcp52 | climate change impact sceanrios |
stockType | Carbon stock types |
t_all(t_ext) | 5-year time periods |
t(t_all) | Simulated time periods |
type | GAMS variable attribute used for the output |
Benjamin Leon Bodirsky, Florian Humpenoeder, Abhijeet Mishra
09_drivers, 14_yields, 30_crop, 31_past, 32_forestry, 35_natveg, 45_climate, 56_ghg_policy, 59_som
Braakhekke, Maarten C., Jonathan C. Doelman, Peter Baas, Christoph Müller, Sibyll Schaphoff, Elke Stehfest, and Detlef P. van Vuuren. 2019. “Modelling Forest Plantations for Carbon Uptake with the LPJmL Dynamic Global Vegetation Model.” Earth System Dynamics Discussions, April, 1–24. https://doi.org/https://doi.org/10.5194/esd-2019-13.
Humpenöder, Florian, Alexander Popp, Jan Philip Dietrich, David Klein, Hermann Lotze-Campen, Markus Bonsch, Benjamin Leon Bodirsky, Isabelle Weindl, Miodrag Stevanovic, and Christoph Müller. 2014. “Investigating Afforestation and Bioenergy CCS as Climate Change Mitigation Strategies.” Environmental Research Letters 9 (6): 064029. https://doi.org/10.1088/1748-9326/9/6/064029.