The 40_techpol module formulates technological policies. They can be part of a baseline or climate policy scenario.
Description | Unit | A | B | C | D | E | F | G | H | I | |
---|---|---|---|---|---|---|---|---|---|---|---|
cm_nucscen | nuclear option choice | x | |||||||||
pm_gdp (tall, all_regi) |
GDP data | \(trn US\$ 2005\) | x | x | x | ||||||
pm_NuclearConstraint (ttot, all_regi, all_te) |
parameter with the real-world capacities, construction and plans | x | |||||||||
pm_pop (tall, all_regi) |
population data | \(bn people\) | x | x | x | x | |||||
pm_prodCouple (all_regi, all_enty, all_enty, all_te, all_enty) |
own consumption | x | x | x | |||||||
pm_ttot_val (ttot) |
value of ttot set element | x | x | x | |||||||
vm_cap (tall, all_regi, all_te, rlf) |
net total capacities | x | x | x | x | x | |||||
vm_deltaCap (tall, all_regi, all_te, rlf) |
capacity additions | x | x | x | x | x | x | ||||
vm_demPe (tall, all_regi, all_enty, all_enty, all_te) |
pe demand. | \(TWa, Uranium: Mt Ur\) | x | x | x | ||||||
vm_prodSe (tall, all_regi, all_enty, all_enty, all_te) |
se production. | \(TWa\) | x | x | x | ||||||
vm_shUePeT (ttot, all_regi, all_te) |
share of the Uepet production from a certain LDV type in the total Uepet production. Unit: percent | x | x | x |
\[\begin{multline*} \sum_{regi}\left( \left(\sum_{te\$sameas(te,"igcc")}\left( \sum_{te2rlf(te,rlf)} vm\_deltaCap(t,regi,te,rlf)\right) \cdot 1000\right) + \left(\sum_{te\$sameas(te,"pc")}\left( \sum_{te2rlf(te,rlf)} vm\_deltaCap(t,regi,te,rlf)\right) \cdot 1000\right) + \left(\sum_{te\$sameas(te,"coalchp")}\left( \sum_{te2rlf(te,rlf)} vm\_deltaCap(t,regi,te,rlf)\right) \cdot 1000\right)\right) \leq 20 - \left(2 \cdot \left( pm\_ttot\_val(t)-2015\right)\right) \end{multline*}\]
Limitations There are no known limitations.
\[\begin{multline*} \left(\sum_{te\$sameas(te,"igcc")}\left( \sum_{te2rlf(te,rlf)} vm\_deltaCap(t,regi,te,rlf)\right) \cdot 1000\right) + \left(\sum_{te\$sameas(te,"pc")}\left( \sum_{te2rlf(te,rlf)} vm\_deltaCap(t,regi,te,rlf)\right) \cdot 1000\right) + \left(\sum_{te\$sameas(te,"coalchp")}\left( \sum_{te2rlf(te,rlf)} vm\_deltaCap(t,regi,te,rlf)\right) \cdot 1000\right) \leq p40\_popshare\left(t, regi\right) \cdot \left(20 - \left(2 \cdot \left( pm\_ttot\_val(t)-2015\right)\right)\right) \end{multline*}\]
Limitations There are no known limitations.
\[\begin{multline*} \sum_{regi}\left( \sum\left(te2rlf(te,rlf), vm\_cap(t,regi,te,rlf)\right) \right) \cdot 1000 \geq p40\_NewRenBound(t,te) \end{multline*}\]
\[\begin{multline*} \sum_{regi}\left( \left(\sum_{te\$sameas(te,"igcc")}\left( \sum_{te2rlf(te,rlf)} vm\_deltaCap(t,regi,te,rlf)\right) \cdot 1000\right) + \left(\sum_{te\$sameas(te,"pc")}\left( \sum_{te2rlf(te,rlf)} vm\_deltaCap(t,regi,te,rlf)\right) \cdot 1000\right) + \left(\sum_{te\$sameas(te,"coalchp")}\left( \sum_{te2rlf(te,rlf)} vm\_deltaCap(t,regi,te,rlf)\right) \cdot 1000\right)\right) \leq 20 - \left(2 \cdot \left( pm\_ttot\_val(t)-2015\right)\right) \end{multline*}\]
Limitations There are no known limitations.
\[\begin{multline*} \frac{ vm\_deltaCap(t,regi,"apCarElT","1")}{ \left(1e-6 + \sum_{teue2rlf(te,rlf)\$\left(sameas(te,"apCarPeT") OR sameas(te,"apCarElT")\right)} vm\_deltaCap(t,regi,te,rlf)\right)!!1e}-6 to avoid infeasibility in case of zero sales in 2110 \geq p40\_EV\_share(t,regi) \end{multline*}\]
Limitations There are no known limitations.
\[\begin{multline*} \sum_{regi}\left( \sum\left(te2rlf(te,rlf), vm\_cap(t,regi,te,rlf)\right) \right) \cdot 1000 \geq p40\_NewRenBound(t,te) \end{multline*}\]
Limitations There are no known limitations.
Technology policy components of nationally determined contributions as submitted to UNFCCC between 2015-2017. Soft-coded, with some semi-hardcoded constraints (for EU, USA, Japan, India and China, only active if “EUR”, “USA”, “JPN”, “IND”, “CHN” or “CHA” is a native region).
\[\begin{multline*} \sum_{te2rlf(te,rlf)\$\left(sameas(te,"biochp") OR sameas(te,"bioigcc") OR sameas(te,"bioigccc")\right)} vm\_cap(t,regi,te,rlf) \cdot 1000 \geq p40\_ElecBioBound(t,regi) \end{multline*}\]
\[\begin{multline*} \sum_{pe2se(enty,enty2,te)\$sameas(enty,"pegas")}vm\_demPe(t,regi,enty,enty2,te) \geq \sum_{iso\_regi\$map\_iso\_regi(iso\_regi,regi)}\left(p40\_PEgasBound(t,iso\_regi) \cdot \left(\sum_{pe2se(enty,enty2,te)\$peBio(enty)}vm\_demPe(t,regi,enty,enty2,te) + \sum_{pe2se(enty,enty2,te)\$\left(sameas(enty,"peoil") OR sameas(enty,"pecoal") OR sameas(enty,"pegas")\right)}vm\_demPe(t,regi,enty,enty2,te) + \sum_{pe2se(enty,entySe,te)\$\left(sameas(enty,"pegeo") OR sameas(enty,"pehyd") OR sameas(enty,"pewin") OR sameas(enty,"pesol") OR sameas(enty,"peur") \right)}\left(\frac{ vm\_prodSe(t,regi,enty,entySe,te)}{ p40\_noncombust\_acc\_eff(t,iso\_regi,te)}\right)\right) \right) \end{multline*}\]
\[\begin{multline*} \sum_{pe2se(enty,entySe,te)\$\left(sameas(enty,"pegeo") OR sameas(enty,"pehyd") OR sameas(enty,"pewin") OR sameas(enty,"pesol") OR sameas(enty,"peur") \right)}\left( \sum_{iso\_regi\$map\_iso\_regi(iso\_regi,regi)}\left(\frac{vm\_prodSe(t,regi,enty,entySe,te)}{ p40\_noncombust\_acc\_eff(t,iso\_regi,te)}\right)\right) + \sum_{pe2se(enty,enty2,te)\$peBio(enty)}vm\_demPe(t,regi,enty,enty2,te) - \sum_{pe2se(enty,enty2,te)\$\left(peBio(enty) \& sameas(te,"biotr")\right)}vm\_demPe(t,regi,enty,enty2,te) \geq \sum_{iso\_regi\$map\_iso\_regi(iso\_regi,regi)}\left(p40\_PElowcarbonBound(t,iso\_regi) \cdot \left(\sum_{pe2se(enty,enty2,te)\$peBio(enty)}vm\_demPe(t,regi,enty,enty2,te) + \sum_{pe2se(enty,enty2,te)\$\left(sameas(enty,"peoil") OR sameas(enty,"pecoal") OR sameas(enty,"pegas")\right)}vm\_demPe(t,regi,enty,enty2,te) + \sum_{pe2se(enty,entySe,te)\$\left(sameas(enty,"pegeo") OR sameas(enty,"pehyd") OR sameas(enty,"pewin") OR sameas(enty,"pesol") OR sameas(enty,"peur") \right)}\left(\frac{ vm\_prodSe(t,regi,enty,entySe,te)}{ p40\_noncombust\_acc\_eff(t,iso\_regi,te)}\right) - \sum_{pe2se(enty,enty2,te)\$\left(peBio(enty) \& sameas(te,"biotr")\right)}vm\_demPe(t,regi,enty,enty2,te) \right)\right) \end{multline*}\]
\[\begin{multline*} \left( \sum_{pe2se(enty,enty2,te)\$\left(sameas(enty,"pegeo") OR sameas(enty,"pehyd") OR sameas(enty,"pewin") OR sameas(enty,"pesol") OR sameas(enty,"pebiolc") OR sameas(enty,"pebios") OR sameas(enty,"pebioil")\right)} vm\_prodSe(t,regi,enty,enty2,te) + \sum_{pc2te\left(enty,enty2,te,entySe(enty3)\right)\$peBio(enty)}\left( max\left(0, pm\_prodCouple(regi,enty,enty2,te,enty3)\right) \cdot vm\_prodSe(t,regi,enty,enty2,te)\right) \right) \geq p40\_FE\_RenShare(t,regi) \cdot \left( \sum_{pe2se(enty,enty2,te)} vm\_prodSe(t,regi,enty,enty2,te) + \sum_{pc2te\left(enty,enty2,te,entySe(enty3)\right)}\left( max\left(0, pm\_prodCouple(regi,enty,enty2,te,enty3)\right) \cdot vm\_prodSe(t,regi,enty,enty2,te)\right) \right) \end{multline*}\]
\[\begin{multline*} \left( \sum_{pe2se(enty,"seel",te)\$\left(sameas(enty,"pegeo") OR sameas(enty,"pehyd") OR sameas(enty,"pewin") OR sameas(enty,"pesol") OR sameas(enty,"pebiolc") OR sameas(enty,"pebios") OR sameas(enty,"pebioil")\right)} vm\_prodSe(t,regi,enty,"seel",te) \right) \geq \sum_{iso\_regi\$map\_iso\_regi(iso\_regi,regi)}p40\_El\_RenShare(t,iso\_regi) \cdot \left( \sum_{pe2se(enty,"seel",te)} vm\_prodSe(t,regi,enty,"seel",te) \right) \end{multline*}\]
\[\begin{multline*} \sum_{teRe(te)}\left( \sum_{ te2rlf(te,rlf)}vm\_cap(t,regi,te,rlf)\right) + \sum_{ te2rlf("tnrs",rlf)}vm\_cap(t,regi,"tnrs",rlf) \geq p40\_ElCap\_RenShare(t,regi) \cdot \sum_{\left(all\_enty,te\right)\$en2en(all\_enty,"seel",te)}\left(\sum_{ te2rlf(te,rlf)}vm\_cap(t,regi,te,rlf)\right) \end{multline*}\]
\[\begin{multline*} \left(\sum_{te\$sameas(te,"igcc")}\left( \sum_{te2rlf(te,rlf)} vm\_deltaCap(t,regi,te,rlf)\right) \cdot 1000\right) + \left(\sum_{te\$sameas(te,"pc")}\left( \sum_{te2rlf(te,rlf)} vm\_deltaCap(t,regi,te,rlf)\right) \cdot 1000\right) + \left(\sum_{te\$sameas(te,"coalchp")}\left( \sum_{te2rlf(te,rlf)} vm\_deltaCap(t,regi,te,rlf)\right) \cdot 1000\right) \leq 1000-\sum\left(iso\_regi\$map\_iso\_regi(iso\_regi,regi),p40\_CoalBound(t,iso\_regi)\right) \end{multline*}\]
Limitations so far only includes capacity targets in power sector, a few share-constraints for native regions (see above), but no representation of efficiency targets in transport sector
Technology policy components of nationally determined contributions as submitted to UNFCCC between 2015-2017. Soft-coded, with some semi-hardcoded constraints (for EU, USA, Japan, India and China, only active if “EUR”, “USA”, “JPN”, “IND”, “CHN” or “CHA” is a native region).
\[\begin{multline*} \sum_{te2rlf(te,rlf)\$\left(sameas(te,"biochp") OR sameas(te,"bioigcc") OR sameas(te,"bioigccc")\right)} vm\_cap(t,regi,te,rlf) \cdot 1000 \geq p40\_ElecBioBound(t,regi) \end{multline*}\]
\[\begin{multline*} \sum_{pe2se(enty,enty2,te)\$sameas(enty,"pegas")}vm\_demPe(t,regi,enty,enty2,te) \geq \sum_{iso\_regi\$map\_iso\_regi(iso\_regi,regi)}\left(p40\_PEgasBound(t,iso\_regi) \cdot \left(\sum_{pe2se(enty,enty2,te)\$peBio(enty)}vm\_demPe(t,regi,enty,enty2,te) + \sum_{pe2se(enty,enty2,te)\$\left(sameas(enty,"peoil") OR sameas(enty,"pecoal") OR sameas(enty,"pegas")\right)}vm\_demPe(t,regi,enty,enty2,te) + \sum_{pe2se(enty,entySe,te)\$\left(sameas(enty,"pegeo") OR sameas(enty,"pehyd") OR sameas(enty,"pewin") OR sameas(enty,"pesol") OR sameas(enty,"peur") \right)}\left(\frac{ vm\_prodSe(t,regi,enty,entySe,te)}{ p40\_noncombust\_acc\_eff(t,iso\_regi,te)}\right)\right) \right) \end{multline*}\]
\[\begin{multline*} \sum_{pe2se(enty,entySe,te)\$\left(sameas(enty,"pegeo") OR sameas(enty,"pehyd") OR sameas(enty,"pewin") OR sameas(enty,"pesol") OR sameas(enty,"peur") \right)}\left( \sum_{iso\_regi\$map\_iso\_regi(iso\_regi,regi)}\left(\frac{vm\_prodSe(t,regi,enty,entySe,te)}{ p40\_noncombust\_acc\_eff(t,iso\_regi,te)}\right)\right) + \sum_{pe2se(enty,enty2,te)\$peBio(enty)}vm\_demPe(t,regi,enty,enty2,te) - \sum_{pe2se(enty,enty2,te)\$\left(peBio(enty) \& sameas(te,"biotr")\right)}vm\_demPe(t,regi,enty,enty2,te) \geq \sum_{iso\_regi\$map\_iso\_regi(iso\_regi,regi)}\left(p40\_PElowcarbonBound(t,iso\_regi) \cdot \left(\sum_{pe2se(enty,enty2,te)\$peBio(enty)}vm\_demPe(t,regi,enty,enty2,te) + \sum_{pe2se(enty,enty2,te)\$\left(sameas(enty,"peoil") OR sameas(enty,"pecoal") OR sameas(enty,"pegas")\right)}vm\_demPe(t,regi,enty,enty2,te) + \sum_{pe2se(enty,entySe,te)\$\left(sameas(enty,"pegeo") OR sameas(enty,"pehyd") OR sameas(enty,"pewin") OR sameas(enty,"pesol") OR sameas(enty,"peur") \right)}\left(\frac{ vm\_prodSe(t,regi,enty,entySe,te)}{ p40\_noncombust\_acc\_eff(t,iso\_regi,te)}\right) - \sum_{pe2se(enty,enty2,te)\$\left(peBio(enty) \& sameas(te,"biotr")\right)}vm\_demPe(t,regi,enty,enty2,te) \right)\right) \end{multline*}\]
\[\begin{multline*} \left( \sum_{pe2se(enty,enty2,te)\$\left(sameas(enty,"pegeo") OR sameas(enty,"pehyd") OR sameas(enty,"pewin") OR sameas(enty,"pesol") OR sameas(enty,"pebiolc") OR sameas(enty,"pebios") OR sameas(enty,"pebioil")\right)} vm\_prodSe(t,regi,enty,enty2,te) + \sum_{pc2te\left(enty,enty2,te,entySe(enty3)\right)\$peBio(enty)}\left( max\left(0, pm\_prodCouple(regi,enty,enty2,te,enty3)\right) \cdot vm\_prodSe(t,regi,enty,enty2,te)\right) \right) \geq p40\_FE\_RenShare(t,regi) \cdot \left( \sum_{pe2se(enty,enty2,te)} vm\_prodSe(t,regi,enty,enty2,te) + \sum_{pc2te\left(enty,enty2,te,entySe(enty3)\right)}\left( max\left(0, pm\_prodCouple(regi,enty,enty2,te,enty3)\right) \cdot vm\_prodSe(t,regi,enty,enty2,te)\right) \right) \end{multline*}\]
\[\begin{multline*} \left( \sum_{pe2se(enty,"seel",te)\$\left(sameas(enty,"pegeo") OR sameas(enty,"pehyd") OR sameas(enty,"pewin") OR sameas(enty,"pesol") OR sameas(enty,"pebiolc") OR sameas(enty,"pebios") OR sameas(enty,"pebioil")\right)} vm\_prodSe(t,regi,enty,"seel",te) \right) \geq \sum_{iso\_regi\$map\_iso\_regi(iso\_regi,regi)}p40\_El\_RenShare(t,iso\_regi) \cdot \left( \sum_{pe2se(enty,"seel",te)} vm\_prodSe(t,regi,enty,"seel",te) \right) \end{multline*}\]
\[\begin{multline*} \sum_{teRe(te)}\left( \sum_{ te2rlf(te,rlf)}vm\_cap(t,regi,te,rlf)\right) + \sum_{ te2rlf("tnrs",rlf)}vm\_cap(t,regi,"tnrs",rlf) \geq p40\_ElCap\_RenShare(t,regi) \cdot \sum_{\left(all\_enty,te\right)\$en2en(all\_enty,"seel",te)}\left(\sum_{ te2rlf(te,rlf)}vm\_cap(t,regi,te,rlf)\right) \end{multline*}\]
\[\begin{multline*} \left(\sum_{te\$sameas(te,"igcc")}\left( \sum_{te2rlf(te,rlf)} vm\_deltaCap(t,regi,te,rlf)\right) \cdot 1000\right) + \left(\sum_{te\$sameas(te,"pc")}\left( \sum_{te2rlf(te,rlf)} vm\_deltaCap(t,regi,te,rlf)\right) \cdot 1000\right) + \left(\sum_{te\$sameas(te,"coalchp")}\left( \sum_{te2rlf(te,rlf)} vm\_deltaCap(t,regi,te,rlf)\right) \cdot 1000\right) \leq 1000-\sum\left(iso\_regi\$map\_iso\_regi(iso\_regi,regi),p40\_CoalBound(t,iso\_regi)\right) \end{multline*}\]
Limitations so far only includes capacity targets in power sector, a few share-constraints for native regions (see above), but no representation of efficiency targets in transport sector
Limitations There are no known limitations.
\[\begin{multline*} \sum_{te2rlf(te,rlf)\$\left(sameas(te,"biochp") OR sameas(te,"bioigcc") OR sameas(te,"bioigccc")\right)} vm\_cap(t,regi,te,rlf) \cdot 1000 \geq p40\_ElecBioBound(t,regi) \end{multline*}\]
\[\begin{multline*} \sum_{pe2se(enty,enty2,te)\$sameas(enty,"pegas")}vm\_demPe(t,regi,enty,enty2,te) \geq \sum_{iso\_regi\$map\_iso\_regi(iso\_regi,regi)}\left(p40\_PEgasBound(t,iso\_regi) \cdot \left(\sum_{pe2se(enty,enty2,te)\$peBio(enty)}vm\_demPe(t,regi,enty,enty2,te) + \sum_{pe2se(enty,enty2,te)\$\left(sameas(enty,"peoil") OR sameas(enty,"pecoal") OR sameas(enty,"pegas")\right)}vm\_demPe(t,regi,enty,enty2,te) + \sum_{pe2se(enty,entySe,te)\$\left(sameas(enty,"pegeo") OR sameas(enty,"pehyd") OR sameas(enty,"pewin") OR sameas(enty,"pesol") OR sameas(enty,"peur") \right)}\left(\frac{ vm\_prodSe(t,regi,enty,entySe,te)}{ p40\_noncombust\_acc\_eff(t,iso\_regi,te)}\right)\right) \right) \end{multline*}\]
\[\begin{multline*} \sum_{pe2se(enty,entySe,te)\$\left(sameas(enty,"pegeo") OR sameas(enty,"pehyd") OR sameas(enty,"pewin") OR sameas(enty,"pesol") OR sameas(enty,"peur") \right)}\left( \sum_{iso\_regi\$map\_iso\_regi(iso\_regi,regi)}\left(\frac{vm\_prodSe(t,regi,enty,entySe,te)}{ p40\_noncombust\_acc\_eff(t,iso\_regi,te)}\right)\right) + \sum_{pe2se(enty,enty2,te)\$peBio(enty)}vm\_demPe(t,regi,enty,enty2,te) - \sum_{pe2se(enty,enty2,te)\$\left(peBio(enty) \& sameas(te,"biotr")\right)}vm\_demPe(t,regi,enty,enty2,te) \geq \sum_{iso\_regi\$map\_iso\_regi(iso\_regi,regi)}\left(p40\_PElowcarbonBound(t,iso\_regi) \cdot \left(\sum_{pe2se(enty,enty2,te)\$peBio(enty)}vm\_demPe(t,regi,enty,enty2,te) + \sum_{pe2se(enty,enty2,te)\$\left(sameas(enty,"peoil") OR sameas(enty,"pecoal") OR sameas(enty,"pegas")\right)}vm\_demPe(t,regi,enty,enty2,te) + \sum_{pe2se(enty,entySe,te)\$\left(sameas(enty,"pegeo") OR sameas(enty,"pehyd") OR sameas(enty,"pewin") OR sameas(enty,"pesol") OR sameas(enty,"peur") \right)}\left(\frac{ vm\_prodSe(t,regi,enty,entySe,te)}{ p40\_noncombust\_acc\_eff(t,iso\_regi,te)}\right) - \sum_{pe2se(enty,enty2,te)\$\left(peBio(enty) \& sameas(te,"biotr")\right)}vm\_demPe(t,regi,enty,enty2,te) \right)\right) \end{multline*}\]
\[\begin{multline*} \left( \sum_{pe2se(enty,enty2,te)\$\left(sameas(enty,"pegeo") OR sameas(enty,"pehyd") OR sameas(enty,"pewin") OR sameas(enty,"pesol") OR sameas(enty,"pebiolc") OR sameas(enty,"pebios") OR sameas(enty,"pebioil")\right)} vm\_prodSe(t,regi,enty,enty2,te) + \sum_{pc2te\left(enty,enty2,te,entySe(enty3)\right)\$peBio(enty)}\left( max\left(0, pm\_prodCouple(regi,enty,enty2,te,enty3)\right) \cdot vm\_prodSe(t,regi,enty,enty2,te)\right) \right) \geq \sum_{iso\_regi\$map\_iso\_regi(iso\_regi,regi)}p40\_FE\_RenShare(t,iso\_regi) \cdot \left( \sum_{pe2se(enty,enty2,te)} vm\_prodSe(t,regi,enty,enty2,te) + \sum_{pc2te\left(enty,enty2,te,entySe(enty3)\right)}\left( max\left(0, pm\_prodCouple(regi,enty,enty2,te,enty3)\right) \cdot vm\_prodSe(t,regi,enty,enty2,te)\right) \right) \end{multline*}\]
Limitations There are no known limitations.
Description | Unit | A | B | C | D | E | F | G | H | I | |
---|---|---|---|---|---|---|---|---|---|---|---|
f40_FE_RenShare (tall, all_regi) |
Lower bound on ren share - EU lower bound on renewable share in gross final energy (=secondary energy in REMIND) | x | x | ||||||||
p40_CoalBound (ttot, iso_regi) |
level for upper bound on absolute capacities, in GW for all technologies except electromobility | x | x | x | |||||||
p40_El_RenShare (ttot, iso_regi) |
Lower bound on low carbon share, e.g. 0.2 for 20% | x | x | x | |||||||
p40_ElCap_RenShare (ttot, all_regi) |
Lower bound on low carbon share in total installed capacity, e.g. 0.2 for 20% | x | x | x | |||||||
p40_ElecBioBound (ttot, all_regi) |
level for lower bound on biomass tech. absolute capacities, in GW | x | x | x | |||||||
p40_EV_share (ttot, all_regi) |
share of EV in LDV sales | x | |||||||||
p40_FE_RenShare (tall, all_regi) |
Lower bound on ren share, e.g. 0.2 for 20% | x | x | x | |||||||
p40_NewRenBound (ttot, all_te) |
level for lower bound on absolute capacities, in GW for all technologies except electromobility | x | x | ||||||||
p40_noncombust_acc_eff (ttot, iso_regi, all_te) |
Efficiency used for the accounting of non-combustibles PE, e.g. 0.45 for 45% under substitution method, eq 1 for all carriers under direct accounting method | x | x | x | |||||||
p40_PEgasBound (ttot, iso_regi) |
level for lower bound of gas share in PE, e.g. 0.2 for 20% | x | x | x | |||||||
p40_PElowcarbonBound (ttot, iso_regi) |
Lower bound on low carbon share, e.g. 0.2 for 20% | x | x | x | |||||||
p40_popshare (ttot, all_regi) |
population share for allocating the remaining coal capacity additions in 2015 and 2020 | x | |||||||||
p40_TechBound (ttot, all_regi, all_te) |
NDC capacity targets for solar, wind, nuclear, hydro, and biomass (GW) | x | x | x | |||||||
q40_CoalBound | Allowing gradual phase-out for coal electricity to reflect existing project pipeline | x | x | x | x | x | |||||
q40_El_RenShare | Lower bound on low carbon share in electricity | x | x | ||||||||
q40_ElCap_RenShare | Lower bound on low carbon share in total installed capacity | x | x | ||||||||
q40_ElecBioBound | equation low-carbon push technology policy for bio power | x | x | x | |||||||
q40_EV_share | Lower bound on EVs in LDVs | x | |||||||||
q40_FE_RenShare | Lower bound on renewable share | x | x | x | |||||||
q40_NewRenBound | equation low-carbon push technology policy | x | x | ||||||||
q40_PEgasBound | Mandating minimum PE gas share | x | x | x | |||||||
q40_PElowcarbonBound | Lower bound on low carbon share | x | x | x |
description | |
---|---|
all_enty | all types of quantities |
all_regi | all regions |
all_te | all energy technologies, including from modules |
en2en(all_enty, all_enty, all_te) | all energy conversion mappings |
enty(all_enty) | all types of quantities |
entySe(all_enty) | secondary energy types |
in(all_in) | All inputs and outputs of the CES function |
iso_regi | all iso countries and EU and greater China region |
map_iso_regi(iso_regi, all_regi) | mapping from iso countries to regions that represent country |
modules | all the available modules |
pc2te(all_enty, all_enty, all_te, all_enty) | mapping for own consumption of technologies |
pe2se(all_enty, all_enty, all_te) | map primary energy carriers to secondary |
peBio(all_enty) | biomass primary energy types |
regi(all_regi) | all regions used in the solution process |
rlf | cost levels of fossil fuels |
t(ttot) | modeling time, usually starting in 2005, but later for fixed delay runs |
tall | time index |
te(all_te) | energy technologies |
te2rlf(all_te, rlf) | all technologies to grades |
teRe(all_te) | renewable technologies including biomass |
teue2rlf(all_te, rlf) | mapping for ES production technologies to grades |
ttot(tall) | time index with spin up |
Christoph Bertram, Falko Ueckertd
04_PE_FE_parameters, 35_transport, core