MAgPIE - An Open Source land-use modeling framework

4.8.2

created with goxygen 1.4.4

Peatland (58_peatland)

Description

The peatland module calculates GHG emissions from degrading/drained peatlands.

Interfaces

Interfaces to other modules

Input

module inputs (A: off | B: v2)
  Description Unit A B
pcm_land
(j, land)
Land area in previous time step including possible changes after optimization \(10^6 ha\) x
pcm_land_forestry
(j, type32)
Forestry land pools \(10^6 ha\) x
pm_climate_class
(j, clcl)
Koeppen-Geiger climate classification on the simulation cluster level \(1\) x
pm_interest
(t_all, i)
Interest rate in each region and timestep \(\%/yr\) x
vm_emissions_reg
(i, emis_source, pollutants)
Regional emissions by source and gas after technical mitigation N CH4 C \(Tg/yr\) x x
vm_land
(j, land)
Land area of the different land types \(10^6 ha\) x
vm_land_forestry
(j, type32)
Forestry land pools \(10^6 ha\) x
vm_landexpansion
(j, land)
Land expansion \(10^6 ha\) x
vm_landexpansion_forestry
(j, type32)
Forestry land expansion \(10^6 ha\) x
vm_landreduction
(j, land)
Land reduction \(10^6 ha\) x
vm_landreduction_forestry
(j, type32)
Forestry land reduction \(10^6 ha\) x

Output

module outputs
  Description Unit
vm_peatland_cost
(j)
One-time and recurring cost of managed peatland \(10^6 USD_{05MER}/yr\)

Realizations

(A) off

In this realization, peatlands do not exist. Therefore, GHG emissions from degrading peatlands are assumed zero.

Limitations Peatland area and associated GHG emissions are fixed to zero.

(B) v2

In this realization, the state of peatlands is modelled based on the methodology described in Humpenöder et al. (2020).
The initial map for intact, degraded and rewetted peatland is based on the Global Peatland Map 2.0 and the Global Peatland Database, both for the year 2022. Therefore, it is advised to set s58_fix_peatland to 2020 when using this realisation (2022 is not available as time step in MAgPIE). Future peatland dynamics are estimated by multiplying changes in managed land with a peatland scaling factor. GHG emissions from drained and rewetted peatlands as well as from peat extraction are calculated based on GHG emission factors. In this realisation, peatland GHG emission factors for boreal and tropical climates are based on Hiraishi et al. (2014) and Wilson, Blain, and Couwenberg (2016). Peatland GHG emission factors for temperate climates are based on more recent estimates from Tiemeyer et al. (2020).

Assumed rules for changes in peatland area:

Constraint for constant total peatland area over time:

\[\begin{multline*} \sum_{land58} v58\_peatland(j2,land58) = \sum_{land58} pc58\_peatland(j2,land58) \end{multline*}\]

Peatland area change:

\[\begin{multline*} v58\_peatlandChange(j2,land58) = v58\_peatland(j2,land58)-pc58\_peatland(j2,land58) \end{multline*}\]

Managed land area:

\[\begin{multline*} v58\_manLand(j2,manPeat58) = m58\_LandMerge(vm\_land,vm\_land\_forestry,"j2") \end{multline*}\]

Managed land area expansion and reduction:

\[\begin{multline*} v58\_manLandExp(j2,manPeat58) = m58\_LandMerge(vm\_landexpansion,vm\_landexpansion\_forestry,"j2") \end{multline*}\]

\[\begin{multline*} v58\_manLandRed(j2,manPeat58) = m58\_LandMerge(vm\_landreduction,vm\_landreduction\_forestry,"j2") \end{multline*}\]

Future peatland dynamics (v58_peatland) for drained peatlands used as cropland, pasture or forestry (manPeat58) depend on changes in managed agricultural and forestry land (v58_manLandExp, v58_manLandRed), multiplied with corresponding scaling factors for expansion (p58_scalingFactorExp) and reduction (p58_scalingFactorRed). Both scaling factors are time-dynamic, i.e. the scaling factors vary depending on changes in drained peatland and managed land. The scaling factor for expansion reflects the ratio of available area for peatland drainage and managed land expansion, based on the assumption that the expansion of drained peatland is proportional to the expansion of managed land. The scaling factor for reduction reflects the ratio of drained peatland and total peatland area, based on the assumption that the likelihood of peatland rewetting increases with a higher share of drained peatland over total peatland area. Therefore, the scaling factor for peatland reduction increases with an increasing share of drained peatland and decreases with a decreasing share of drained peatland. In case managed land remains unchanged, also drained peatland remains unchanged.

\[\begin{multline*} v58\_peatland(j2,manPeat58) = pc58\_peatland(j2,manPeat58) + v58\_manLandExp(j2,manPeat58) \cdot \sum_{ct} p58\_scalingFactorExp(ct,j2) - v58\_balance(j2,manPeat58) - v58\_manLandRed(j2,manPeat58) \cdot \sum_{ct} p58\_scalingFactorRed(ct,j2,manPeat58) + v58\_balance2(j2,manPeat58) \end{multline*}\]

Drained peatland used for agriculture and forestry cannot exceed corresponding managed land.

\[\begin{multline*} v58\_peatland(j2,manPeat58) \leq v58\_manLand(j2,manPeat58) \end{multline*}\]

Costs for peatland degradation and rewetting

\[\begin{multline*} vm\_peatland\_cost(j2) = \sum_{cost58} v58\_peatland\_cost\_annuity(j2,cost58) + v58\_peatland(j2,"rewetted") \cdot \sum_{ct} i58\_cost\_rewet\_recur(ct) + \sum_{manPeat58} v58\_peatland(j2,manPeat58) \cdot \sum_{ct} i58\_cost\_drain\_recur(ct) + \sum_{manPeat58}\left( v58\_balance(j2,manPeat58)+v58\_balance2(j2,manPeat58)\right) \cdot s58\_balance\_penalty \end{multline*}\]

\[\begin{multline*} v58\_peatland\_cost\_annuity(j2,cost58) \geq \left(- v58\_peatlandChange(j2,"intact") \cdot \sum_{ct} i58\_cost\_drain\_intact\_onetime(ct)\right)\$sameas(cost58,"drain\_intact") + \left(- v58\_peatlandChange(j2,"rewetted") \cdot \sum_{ct} i58\_cost\_drain\_rewet\_onetime(ct)\right)\$sameas(cost58,"drain\_rewetted") + \left(v58\_peatlandChange(j2,"rewetted") \cdot \sum_{ct} i58\_cost\_rewet\_onetime(ct)\right)\$sameas(cost58,"rewet") \cdot \sum_{cell(i2,j2),ct}\left(\frac{pm\_interest(ct,i2)}{\left(1+pm\_interest(ct,i2)\right)}\right) \end{multline*}\]

Detailed peatland GHG emissions

\[\begin{multline*} v58\_peatland\_emis(j2,land58,emis58) = \sum_{clcl58}\left( v58\_peatland(j2,land58) \cdot p58\_mapping\_cell\_climate(j2,clcl58) \cdot f58\_ipcc\_wetland\_ef(clcl58,land58,emis58)\right) \end{multline*}\]

Aggregation of detailed peatland GHG emissions for interface vm_emissions_reg

\[\begin{multline*} vm\_emissions\_reg(i2,"peatland",poll58) = \sum_{cell(i2,j2),land58,emisSub58\_to\_poll58(emisSub58,poll58)}\left( v58\_peatland\_emis(j2,land58,emisSub58)\right) \end{multline*}\]

Peatland scaling factor for expansion: (totalPeatland - manPeatland) / (totalLand - manLand)

p58_availPeatlandExp(t,j) = sum(land58, pc58_peatland(j,land58)) - sum(manPeat58, pc58_peatland(j,manPeat58));
p58_availLandExp(t,j) = sum(land, pcm_land(j,land)) - sum(manPeat58, pc58_manLand(j,manPeat58));
p58_scalingFactorExp(t,j) = 
    (p58_availPeatlandExp(t,j) / p58_availLandExp(t,j))
    $(p58_availPeatlandExp(t,j) > 1e-4 AND p58_availLandExp(t,j) > 1e-4)
    + 0$(p58_availPeatlandExp(t,j) <= 1e-4 OR p58_availLandExp(t,j) <= 1e-4);
p58_scalingFactorExp(t,j)$(p58_scalingFactorExp(t,j) > 1) = 1; 

Peatland scaling factor for reduction: manPeatland / totalPeatland

p58_scalingFactorRed(t,j,manPeat58) = 
    (pc58_peatland(j,manPeat58) / sum(land58, pc58_peatland(j,land58)))
    $(pc58_peatland(j,manPeat58) > 1e-4 AND sum(land58, pc58_peatland(j,land58)) > 1e-4)
    + 0$(pc58_peatland(j,manPeat58) <= 1e-4 OR sum(land58, pc58_peatland(j,land58)) <= 1e-4);
p58_scalingFactorRed(t,j,manPeat58)$(p58_scalingFactorRed(t,j,manPeat58) > 1) = 1; 

Limitations Peatland area and GHG emissions are fixed to 2022 levels for the historic period, depending on s58_fix_peatland. Organic carbon stocks in peatlands are not accounted for.

Definitions

Objects

module-internal objects (A: off | B: v2)
  Description Unit A B
f58_ipcc_wetland_ef
(clcl58, land58, emis58)
Wetland emission factors \(Tg/yr\) x
f58_peatland_area
(j, land58)
Peatland area \(10^6 ha\) x
i58_cost_drain_intact_onetime
(t)
One-time costs for drainage of intact peatland \(USD_{05MER}/ha\) x
i58_cost_drain_recur
(t)
Recurring costs for drained and managed peatlands \(USD_{05MER}/ha\) x
i58_cost_drain_rewet_onetime
(t)
One-time costs for drainage of rewetted peatland \(USD_{05MER}/ha\) x
i58_cost_rewet_onetime
(t)
One-time costs for peatland rewetting \(USD_{05MER}/ha\) x
i58_cost_rewet_recur
(t)
Recurring costs for rewetted peatland \(USD_{05MER}/ha\) x
p58_availLandExp
(t, j)
Available area for expansion of managed land \(10^6 ha\) x
p58_availPeatlandExp
(t, j)
Available area for expansion of drained peatland \(10^6 ha\) x
p58_mapping_cell_climate
(j, clcl58)
Mapping between cells and climate regions \(binary\) x
p58_scalingFactorExp
(t, j)
Scaling factor for peatland expansion \(1\) x
p58_scalingFactorRed
(t, j, manPeat58)
Scaling factor for peatland reduction \(1\) x
pc58_manLand
(j, manPeat58)
Managed land area \(10^6 ha\) x
pc58_peatland
(j, land58)
Peatland area \(10^6 ha\) x
q58_manLand
(j, manPeat58)
Managed land area \(10^6 ha\) x
q58_manLandExp
(j, manPeat58)
Managed land area expansion \(10^6 ha\) x
q58_manLandRed
(j, manPeat58)
Managed land area reduction \(10^6 ha\) x
q58_peatland
(j)
Constraint for total peatland area \(10^6 ha\) x
q58_peatland_cost
(j)
One-time and recurring cost of peatland conversion and management \(10^6 USD_{05MER}/yr\) x
q58_peatland_cost_annuity
(j, cost58)
Annuity costs for peatland conversion in the current timestep \(10^6 USD_{05MER}/yr\) x
q58_peatland_emis
(i, poll58)
GHG emissions from managed peatland \(Tg/yr\) x
q58_peatland_emis_detail
(j, land58, emis58)
Detailed GHG emissions from peatlands \(Tg/yr\) x
q58_peatlandChange
(j, land58)
Peatland area change \(10^6 ha\) x
q58_peatlandMan
(j, manPeat58)
Change of managed peatland area \(10^6 ha\) x
q58_peatlandMan2
(j, manPeat58)
Contraint for managed peatland area \(10^6 ha\) x
s58_balance_penalty Penalty for technical peatland balance term \(USD_{05MER}\) x
s58_cost_drain_intact_onetime One-time costs for drainage of intact peatland \(USD_{05MER}/ha\) x
s58_cost_drain_recur Recurring costs for drained and managed peatlands \(USD_{05MER}/ha\) x
s58_cost_drain_rewet_onetime One-time costs for drainage of rewetted peatland \(USD_{05MER}/ha\) x
s58_cost_rewet_onetime One-time costs for peatland rewetting \(USD_{05MER}/ha\) x
s58_cost_rewet_recur Recurring costs for rewetted peatland \(USD_{05MER}/ha\) x
s58_fix_peatland Year indicating until when peatland area should be fixed \(year\) x
s58_rewetting_switch Peatland rewetting on (Inf) or off \(0\) x
v58_balance
(j, manPeat58)
Technical balance term for peatland scaling factor \(1\) x
v58_balance2
(j, manPeat58)
Technical balance term for peatland scaling factor \(1\) x
v58_manLand
(j, manPeat58)
Managed land area \(10^6 ha\) x
v58_manLandExp
(j, manPeat58)
Managed land area expansion \(10^6 ha\) x
v58_manLandRed
(j, manPeat58)
Managed land area reduction \(10^6 ha\) x
v58_peatland
(j, land58)
Peatland area \(10^6 ha\) x
v58_peatland_cost_annuity
(j, cost58)
Annuity costs for peatland conversion in the current timestep \(10^6 USD_{05MER}/yr\) x
v58_peatland_emis
(j, land58, emis58)
Detailed GHG peatland GHG emissions \(Tg/yr\) x
v58_peatlandChange
(j, land58)
Peatland area change \(10^6 ha\) x

Sets

sets in use
  description
cell(i, j) number of LPJ cells per region i
clcl climate classification types
clcl_mapping(clcl, clcl58) Mapping between detailed and simple climate classes
clcl58 simple climate classes
cost58 annunity cost categories
ct(t) Current time period
drained58(land58) Drained peatland categories
emis_source Emission sources
emis58 Wetland emission types
emisSub58_to_poll58(emisSub58, poll58) Mapping
emisSub58(emis58) Wetland emission types
factors factors included in factor requirements
i all economic regions
i2(i) World regions (dynamic set)
j number of LPJ cells
j2(j) Spatial Clusters (dynamic set)
land Land pools
land58 Peatland categories
manPeat58(land58) Drained and managed peatland categories
poll58(pollutants) Wetland emissions that can be taxed
pollutants(pollutants_all) subset of pollutants_all that can be taxed
t_all(t_ext) 5-year time periods
t(t_all) Simulated time periods
type GAMS variable attribute used for the output
type32 plantation type

Authors

Florian Humpenöder, Debbora Leip

See Also

10_land, 11_costs, 12_interest_rate, 32_forestry, 45_climate, 56_ghg_policy

References

Hiraishi, T, T Krug, K Tanabe, N Srivastava, J Baasansuren, M Fukuda, and T. G. Troxler, eds. 2014. 2013 Supplement to the 2006 IPCC Guidelines for National Greenhouse Gas Inventories: Wetlands. Switzerland: IPCC. http://www.ipcc-nggip.iges.or.jp/public/wetlands/.
Humpenöder, Florian, Kristine Karstens, Hermann Lotze-Campen, Jens Leifeld, Lorenzo Menichetti, Alexandra Barthelmes, and Alexander Popp. 2020. “Peatland Protection and Restoration Are Key for Climate Change Mitigation.” Environmental Research Letters 15 (10): 104093. https://doi.org/10.1088/1748-9326/abae2a.
Tiemeyer, Bärbel, Annette Freibauer, Elisa Albiac Borraz, Jürgen Augustin, Michel Bechtold, Sascha Beetz, Colja Beyer, et al. 2020. “A New Methodology for Organic Soils in National Greenhouse Gas Inventories: Data Synthesis, Derivation and Application.” Ecological Indicators 109 (February): 105838. https://doi.org/10.1016/j.ecolind.2019.105838.
Wilson, D., D. Blain, and J. Couwenberg. 2016. “Greenhouse Gas Emission Factors Associated with Rewetting of Organic Soils.” Mires and Peat 17 (4): 4 28 pp. https://doi.org/10.19189/MaP.2016.OMB.222.