REMIND - REgional Model of INvestments and Development

3.0.0

created with goxygen 1.2.4

Transport (35_transport)

Description

The 35_transport module calculates the transport demand composition as a part of the CES structure.

Interfaces

Interfaces to other modules

Input

module inputs (A: complex | B: edge_esm)
  Description Unit A B
cm_startIter_EDGET starting iteration of EDGE-T x
cm_startyear first optimized modelling time step \(year\) x x
pm_boundCapEV
(tall, all_regi)
installed capacity of electric vehicles x
pm_cesdata
(tall, all_regi, all_in, cesParameter)
parameters of the CES function x
pm_cesdata_sigma
(ttot, all_in)
elasticities of substitution x x
pm_cf
(tall, all_regi, all_te)
Installed capacity availability - capacity factor (fraction of the year that a plant is running) x
pm_esCapCost
(tall, all_regi, all_teEs)
Capital energy cost per unit of consumption for end-use capital (energy service layer) x
pm_eta_conv
(tall, all_regi, all_te)
Time-dependent eta for technologies that do not have explicit time-dependant etas, still eta converges until 2050 to dataglob_values. \(efficiency (0..1)\) x
pm_fe2es
(tall, all_regi, all_teEs)
Conversion factor from final energies to energy services. Default is 1. x
pm_FEPrice
(ttot, all_regi, all_enty, sector, emiMkt)
parameter to capture all FE prices across sectors and markets (tr$2005/TWa) x x
pm_gdp
(tall, all_regi)
GDP data \(trn US\$ 2005\) x x
pm_pop
(tall, all_regi)
population data \(bn people\) x
pm_prodCouple
(all_regi, all_enty, all_enty, all_te, all_enty)
own consumption x
pm_shFeCes
(ttot, all_regi, all_enty, all_in, all_teEs)
Final energy shares for CES nodes x
pm_vintage_in
(all_regi, opTimeYr, all_te)
historical vintage structure. \(arbitrary\) x
qm_budget
(ttot, all_regi)
Budget balance x x
sm_EJ_2_TWa multiplicative factor to convert from EJ to TWa x
sm_eps small number: 1e-9 x x
vm_cap
(tall, all_regi, all_te, rlf)
net total capacities x
vm_capFac
(ttot, all_regi, all_te)
capacity factor of conversion technologies x
vm_cesIO
(tall, all_regi, all_in)
Production factor x
vm_deltaCap
(tall, all_regi, all_te, rlf)
capacity additions x
vm_demFeForEs
(ttot, all_regi, all_enty, all_esty, all_teEs)
Final energy which will be used in the ES layer. x
vm_demFeSector
(ttot, all_regi, all_enty, all_enty, emi_sectors, all_emiMkt)
fe demand per sector and emission market. \(TWa\) x x
vm_prodEs
(ttot, all_regi, all_enty, all_esty, all_teEs)
Energy services (unit determined by conversion factor pm_fe2es). x
vm_prodUe
(ttot, all_regi, all_enty, all_enty, all_te)
Useful energy production \(TWa\) x
vm_transpGDPscale
(ttot, all_regi)
dampening factor to align edge-t non-energy transportation costs with historical GDP data x

Output

module outputs
  Description Unit
vm_shUePeT
(ttot, all_regi, all_te)
share of the Uepet production from a certain LDV type in the total Uepet production. Unit: percent

Realizations

(A) complex

Transport demand composition is calculated for LDV categories, electric trains and an aggregate category HDV. The CES transport branch has 3 nodes (LDV, HDV and electric trains). LDVs are in turn divided into ICE cars, BEVs, FCEVs. The CES branch is in useful energy units (EJ). A correction for the different efficiency of LDV powertrains is therefore included. HDVs include both passenger and freight modes. Vehicles capacity addition for LDVs is calculated in REMIND.

Transport demand composition is calculated for LDV categories, electric trains and an aggregate category HDV. The CES transport branch has 3 nodes (LDV, HDV and electric trains). LDVs are in turn divided into ICE cars, BEVs, FCEVs. The CES branch is in useful energy units (EJ). A correction for the different efficiency of LDV powertrains is therefore included. HDVs include both passenger and freight modes. Vehicles capacity addition for LDVs is calculated in REMIND.


p35_pass_FE_share_transp(ttot,all_regi)        "Share of 'non-LDV passenger FE' in 'total non-LDV FE. Unit: share [0..1]"
p35_pass_nonLDV_ES_efficiency(ttot,all_regi)  "Non-LDV passenger energy service per non-LDV FE. Unit: bn pkm/EJ"
p35_passLDV_ES_efficiency(ttot,all_regi)      "LDV passenger energy service per non-LDV FE. Only correct if applied to CES-input, as BEV and H2FCV have higher efficiencies. Unit: bn pkm/EJ"
p35_freight_ES_efficiency(ttot,all_regi)      "Freight energy service per freight FE. Unit: bn tkm/EJ"
p35_bunkers_fe(tall,all_regi)                 "Bunkers FE demand (fedie) [TWa]"
p35_pass_FE_target_share    "The target share for the harmonization of non-LDV passenger FE (p35_pass_FE_share_transp). Unit: share [0..1]"
p35_harmonizing_year        "Year when full harmonization of shares and efficiencies would be reached."
p35_share_seliq_t(ttot,all_regi)                               "share of liquids used for transport sector (fedie + fepet). Unit 0..1"
p35_share_seh2_t(ttot,all_regi)                                "share of hydrogen used for transport sector  (feh2t). Unit 0..1"
p35_share_seel_t(ttot,all_regi)                                "Share of electricity used for transport sector (feelt). Unit 0..1"
$ifthen not "%cm_INNOPATHS_LDV_mkt_share%" == "off"
  p35_shUePeT_bound(all_te,bound_type)   "define upper and/or lower bound for LDV EV (apCarElT), hydrogen (apCarH2T) or petrol (apCarPeT) market share  [ex. apCarElT.upper 90, apCarPeT.lower 5]" / %cm_INNOPATHS_LDV_mkt_share% /
$endif    
$ifthen.shLDVsales not "%cm_share_LDV_sales%" == "off"
  p35_shLDVSales_bound(ttot,ttot,ext_regi,all_te,bound_type) "define upper and/or lower bound for LDV sales - EV (apCarElT), hydrogen (apCarH2T) or petrol (apCarPeT) - at a given year range" / %cm_share_LDV_sales% / 
$endif.shLDVsales    
;

Transportation Final Energy Balance

\[\begin{multline*} \sum_{\left(entySe,te\right)\$se2fe(entySe,entyFe,te)}\left( vm\_demFeSector(ttot,regi,entySe,entyFe,"trans",emiMkt) \right) = \sum_{transType\_35} v35\_demTransType(ttot,regi,entyFe,emiMkt,transType\_35) \end{multline*}\]

Transportation per type

\[\begin{multline*} v35\_demTransType(ttot,regi,entyFe,emiMkt,"LDV") = \left( \sum_{fe2ue(entyFe,entyUe,te)\$LDV35(te)} v35\_demFe(ttot,regi,entyFe,entyUe,te) \right)\$\left(sameas(emiMkt,"ES") \& \left(NOTsameas(entyFe,"fedie")\right)\right) \end{multline*}\]

\[\begin{multline*} v35\_demTransType(ttot,regi,entyFe,emiMkt,"nonLDV\_noBunkers") = \left( \left( \sum_{fe2ue(entyFe,entyUe,te)} v35\_demFe(ttot,regi,entyFe,entyUe,te) - \sum_{pc2te(entyFE2,entyUe,te,entyFE)}\left( pm\_prodCouple(regi,entyFE2,entyUe,te,entyFE) \cdot vm\_prodUe(ttot,regi,entyFE2,entyUe,te) \right) \right) - \sum_{all\_emiMkt} v35\_demTransType(ttot,regi,entyFe,all\_emiMkt,"nonLDV\_Bunkers") \right)\$\left(sameas(emiMkt,"ES") \& sameas(entyFe,"fedie")\right) + \left( \left( \sum_{fe2ue(entyFe,entyUe,te)\$\left(NOT LDV35(te)\right)} v35\_demFe(ttot,regi,entyFe,entyUe,te) - \sum_{pc2te(entyFE2,entyUe,te,entyFE)}\left( pm\_prodCouple(regi,entyFE2,entyUe,te,entyFE) \cdot vm\_prodUe(ttot,regi,entyFE2,entyUe,te) \right) \right) \right)\$\left(sameas(emiMkt,"ES") \& \left(sameas(entyFe,"feh2t") or sameas(entyFe,"feelt")\right)\right) \end{multline*}\]

\[\begin{multline*} v35\_demTransType(ttot,regi,entyFe,emiMkt,"nonLDV\_Bunkers") = \left( p35\_bunkers\_fe(ttot,regi) \right)\$\left(sameas(emiMkt,"other") \& sameas(entyFe,"fedie")\right) + 0\$\left(sameas(emiMkt,"other") \& NOT sameas(entyFe,"fedie")\right) \end{multline*}\]

Transformation from final energy to useful energy

\[\begin{multline*} pm\_eta\_conv(t,regi,te) \cdot v35\_demFe(t,regi,entyFe,entyUe,te) = vm\_prodUe(t,regi,entyFe,entyUe,te) \end{multline*}\]

Hand-over to CES

\[\begin{multline*} vm\_cesIO(t,regi,in) + pm\_cesdata(t,regi,in,"offset\_quantity") = \sum_{fe2ue(entyFe,entyUe,te)\$ue2ppfen(entyUe,in)} vm\_prodUe(t,regi,entyFe,entyUe,te) \end{multline*}\]

Definition of capacity constraints for FE to ES transformation:

\[\begin{multline*} vm\_prodUe(t,regi,entyFe,entyUe,te) \leq \sum_{teue2rlf(te,rlf)}\left( vm\_capFac(t,regi,te) \cdot vm\_cap(t,regi,te,rlf) \right) \end{multline*}\]

Share of LDV stock

\[\begin{multline*} \sum_{fe2ue(entyFe,"uepet",te2)\$LDV35(te2)} vm\_prodUe(t,regi,entyFe,"uepet",te2) \cdot \frac{ vm\_shUePeT(t,regi,te) }{ 100 } = \sum_{fe2ue(entyFe,"uepet",te)} vm\_prodUe(t,regi,entyFe,"uepet",te) \end{multline*}\]

\[\begin{multline*} \sum_{fe2ue(entyFe,"uepet",te)\$LDV35(te)} vm\_shUePeT(t,regi,te) = 100 \end{multline*}\]

Share of LDV sales

\[\begin{multline*} v35\_shLDVSales(t,regi,te) \cdot \frac{ \sum_{\left(te2,rlf\right)\$\left(te2rlf(te2,rlf) and LDV35(te2)\right)} vm\_deltaCap(t,regi,te2,rlf) }{ 100 } = \sum_{rlf\$te2rlf(te,rlf)} vm\_deltaCap(t,regi,te,rlf) \end{multline*}\]

Transport demand composition is calculated for LDV categories, electric trains and an aggregate category HDV. The CES transport branch has 3 nodes (LDV, HDV and electric trains). LDVs are in turn divided into ICE cars, BEVs, FCEVs. The CES branch is in useful energy units (EJ). A correction for the different efficiency of LDV powertrains is therefore included. HDVs include both passenger and freight modes. Vehicles capacity addition for LDVs is calculated in REMIND.

Limitations Not very flexible implementation of new transport alternatives Not very flexible implementation of new transport alternatives Not very flexible implementation of new transport alternatives

(B) edge_esm

Transport demand composition is calculated based on the EDGE-transport model. This realization allows the EDGE-transport model to interact with REMIND. EDGE is set to run in between iterations. EDGE runs every 5 iterations, to allow REMIND to stabilize in between. Transport structure is defined in detail in EDGE, and only aggregate values are then fed to REMIND. The CES transport branch has 2 nodes (passenger and freight transport) each divided into Short-Medium distance and Long distance options. The CES branch is in energy services units (passenger or ton km). Bunkers (Shipping and Internaitional Aviation) represent the Long distance CES leaves. Vehicles capacity addition is calculated in EDGE (REMIND has no vintage tracking).

Transport demand composition is calculated based on the EDGE-transport model. This realization allows the EDGE-transport model to interact with REMIND. EDGE is set to run in between iterations. EDGE runs every 5 iterations, to allow REMIND to stabilize in between. Transport structure is defined in detail in EDGE, and only aggregate values are then fed to REMIND. The CES transport branch has 2 nodes (passenger and freight transport) each divided into Short-Medium distance and Long distance options. The CES branch is in energy services units (passenger or ton km). Bunkers (Shipping and Internaitional Aviation) represent the Long distance CES leaves. Vehicles capacity addition is calculated in EDGE (REMIND has no vintage tracking).

Transportation Final Energy Balance

\[\begin{multline*} \sum_{\left(entySe,te\right)\$se2fe(entySe,entyFe,te)}\left( vm\_demFeSector(ttot,regi,entySe,entyFe,"trans",emiMkt) \right) = \sum_{fe2es(entyFe,esty,teEs)\$\left(NOT es\_lo35(esty)\right)} vm\_demFeForEs(ttot,regi,entyFe,esty,teEs)\$sameas(emiMkt,"ES")+ \sum_{fe2es(entyFe,esty,teEs)\$es\_lo35(esty)} vm\_demFeForEs(ttot,regi,entyFe,esty,teEs)\$sameas(emiMkt,"other") \end{multline*}\]

Calculating dampening factor to align edge-t non-energy transportation costs with historical GDP data

\[\begin{multline*} vm\_transpGDPscale(ttot,regi) \cdot \left(\sum\left(fe2es(entyFe,esty,teEs)\$entyFeTrans(entyFe), pm\_esCapCost("2005",regi,teEs) \cdot vm\_prodEs("2005",regi,entyFe,esty,teEs)\right)\right) = \left(p35\_transportGDPshare("2005",regi) \cdot pm\_gdp("2005",regi)\right) \end{multline*}\]

Transport demand composition is calculated based on the EDGE-transport model. This realization allows the EDGE-transport model to interact with REMIND. EDGE is set to run in between iterations. EDGE runs every 5 iterations, to allow REMIND to stabilize in between. Transport structure is defined in detail in EDGE, and only aggregate values are then fed to REMIND. The CES transport branch has 2 nodes (passenger and freight transport) each divided into Short-Medium distance and Long distance options. The CES branch is in energy services units (passenger or ton km). Bunkers (Shipping and Internaitional Aviation) represent the Long distance CES leaves. Vehicles capacity addition is calculated in EDGE (REMIND has no vintage tracking).

Limitations EDGE-transport runs in between iterations and is therefore not fully optimized. EDGE-transport runs in between iterations and is therefore not fully optimized. EDGE-transport runs in between iterations and is therefore not fully optimized.

Definitions

Objects

module-internal objects (A: complex | B: edge_esm)
  Description Unit A B
f35_factorVintages
(all_regi, opTimeYr, all_te)
factor to be able to better reproduce the 2010 decrease of liquids and solids demand x
f35_transp_eff
(all_regi, char35)
read-in of regionalized transport mobility shares and efficiencies x
p35_bunkers_fe
(tall, all_regi)
Bunkers FE demand (fedie) \(TWa\) x
p35_bunkers_fedemand
(tall, all_regi, all_GDPscen, EDGE_scenario_all)
Bunkers FE demand \(EJ\) x
p35_cesdata_sigma
(all_in)
substitution elasticities x x
p35_demByTech
(tall, all_regi, all_GDPscen, EDGE_scenario_all, all_enty, all_in, all_teEs)
Aggregate FE Demand per transport fuel technology \(TWa\) x
p35_esCapCost
(tall, all_regi, all_GDPscen, EDGE_scenario_all, all_teEs)
Capital costs for the transport system \(\$/pkm or \$/tkm\) x
p35_fe2es
(tall, all_regi, all_GDPscen, EDGE_scenario_all, all_teEs)
Aggregate energy efficiency of transport fuel technologies \(trn pkm/Twa or trn tkm/Twa\) x
p35_fe2es_aux
(tall, all_regi, all_GDPscen, EDGE_scenario_all, all_teEs)
Aggregate energy efficiency of transport fuel technologies \(trn pkm/Twa or trn tkm/Twa\) x
p35_freight_ES_efficiency
(ttot, all_regi)
Freight energy service per freight FE. Unit: bn tkm/EJ x
p35_harmonizing_year Year when full harmonization of shares and efficiencies would be reached. x
p35_pass_FE_share_transp
(ttot, all_regi)
Share of ‘non-LDV passenger FE’ in ’total non-LDV FE. Unit: share \(0..1\) x
p35_pass_FE_target_share The target share for the harmonization of non-LDV passenger FE (p35_pass_FE_share_transp). Unit: share \(0..1\) x
p35_pass_nonLDV_ES_efficiency
(ttot, all_regi)
Non-LDV passenger energy service per non-LDV FE. Unit: bn pkm/EJ x
p35_passLDV_ES_efficiency
(ttot, all_regi)
LDV passenger energy service per non-LDV FE. Only correct if applied to CES-input, as BEV and H2FCV have higher efficiencies. Unit: bn pkm/EJ x
p35_share_seel_t
(ttot, all_regi)
Share of electricity used for transport sector (feelt). Unit 0..1 x
p35_share_seh2_t
(ttot, all_regi)
share of hydrogen used for transport sector (feh2t). Unit 0..1 x
p35_share_seliq_t
(ttot, all_regi)
share of liquids used for transport sector (fedie + fepet). Unit 0..1 x
p35_shFeCes
(tall, all_regi, all_GDPscen, EDGE_scenario_all, all_enty, all_in, all_teEs)
Shares of fuels by CES node x
p35_shLDVSales_bound
(ttot, ttot, ext_regi, all_te, bound_type)
define upper and/or lower bound for LDV sales - EV (apCarElT), hydrogen (apCarH2T) or petrol (apCarPeT) - at a given year range x
p35_shUePeT_bound
(all_te, bound_type)
define upper and/or lower bound for LDV EV (apCarElT), hydrogen (apCarH2T) or petrol (apCarPeT) market share \(ex. apCarElT.upper 90, apCarPeT.lower 5\) x
p35_transportGDPshare
(ttot, all_regi)
transportation share in GDP \(percentage\) x
p35_valconv temporary parameter used to set convergence between regions x
q35_demFeTrans
(ttot, all_regi, all_enty, all_emiMkt)
Transportation final energy demand x x
q35_demTransBunkers
(ttot, all_regi, all_enty, all_emiMkt)
Tranportation non LDV Bunkers FE demand x
q35_demTransLDV
(ttot, all_regi, all_enty, all_emiMkt)
Tranportation LDV FE demand x
q35_demTransNonLDVnoBunkers
(ttot, all_regi, all_enty, all_emiMkt)
Tranportation non LDV without Bunkers FE demand x
q35_esm2macro
(ttot, all_regi, all_in)
hand over amount of entyFe/entyUe from ESM(GENERIS) to the MACRO module x
q35_limitCapUe
(ttot, all_regi, all_enty, all_enty, all_te)
capacity constraint for ES production x
q35_shLDVSales
(ttot, all_regi, all_te)
calculate the share of LDV sales x
q35_shUePeT
(ttot, all_regi, all_te)
calculate share of the Uepet production from a certain LDV type in the total Uepet production x
q35_shUePeTbal
(ttot, all_regi)
shares sum must be equal to 100 x
q35_transFe2Ue
(ttot, all_regi, all_enty, all_enty, all_te)
energy tranformation fe to es x
q35_transGDPshare
(ttot, all_regi)
Calculating dampening factor to align edge-t non-energy transportation costs with historical GDP data x
v35_demFe
(ttot, all_regi, all_enty, all_enty, all_te)
fe demand \(TWa\) x
v35_demTransType
(ttot, all_regi, all_enty, all_emiMkt, transType_35)
Tranportation FE demand per type: LDV, nonLDV without Bunkers and nonLDV Bunkers x
v35_shLDVSales
(ttot, all_regi, all_te)
share of LDV sales per tech x

Sets

sets in use
  description
adjte_dyn35(all_te) technologies with adjustment costs on capacity additions - transport module additions
all_emiMkt emission markets
all_enty all types of quantities
all_esty energy services
all_GDPscen all possible GDP scenarios
all_in all inputs and outputs of the CES function
all_regi all regions
all_te all energy technologies, including from modules
all_teEs energy service technologies
bound_type auxiliar set to allow different values for upper and lower bound defined in a single switch
ces_transport_dyn35(all_in, all_in) CES tree structure - transport
cesOut2cesIn(all_in, all_in) CES tree structure
cesParameter parameters of the CES functions and for calibration
char35 characteristics of transport technologies
cm_GDPscen cm_GDPscen as set for use in GDX
EDGE_scenario(EDGE_scenario_all) Selected EDGE-T scenario
EDGE_scenario_all EDGE-T scenarios, used to get the bunkers share on total liquids demand.
emi_sectors comprehensive sector set used for more detailed emissions accounting (REMIND-EU) and for CH4 tier 1 scaling - potentially to be integrated with similar set all_exogEmi
emi2te(all_enty, all_enty, all_te, all_enty) map emissions to technologies
enty(all_enty) all types of quantities
enty_dyn35(all_enty) all types of quantities - transport module additions
entyFe(all_enty) final energy types.
entyFe2Sector(all_enty, emi_sectors) final energy (stationary and transportation) mapping to sectors (industry, buildings, transportation and cdr)
entyFeTrans(all_enty) final energy types from transport sector
entySe(all_enty) secondary energy types
entyUe(all_enty) Useful energy types
entyUe_dyn35(all_enty) Energy service types
es_lo35(all_esty) energy services long distance (bunkers)
es2ppfen(all_esty, all_in) matching ES in ESM to ppfEn in MACRO
es2ppfen_dyn35(all_esty, all_in) matching ES to ppfEn in MACRO
esty(all_esty) energy service types. Have to be added by modules.
esty_dyn35(all_esty) Energy service types
ext_regi extended regions list (includes subsets of H12 regions)
FE_Elec_fety35(all_enty) set for reporting
FE_Transp_fety35(all_enty) set for reporting
fe_transport_liquids_dyn35(all_enty) liquids used by the transport module
fe2ces_dyn35(all_enty, all_in, all_teEs) map FE carriers to CES nodes via appliances
fe2es(all_enty, all_esty, all_teEs) map FE carriers to ES via ES technologies
fe2es_dyn35(all_enty, all_esty, all_teEs) map FE carriers to ES via appliances
fe2ue(all_enty, all_enty, all_te) map FE carriers to ES via appliances
fe2ue_dyn35(all_enty, all_enty, all_te) map FE carriers to ES via appliances
in(all_in) All inputs and outputs of the CES function
in_dyn35(all_in) all inputs and outputs of the CES function - transport module additions
iteration iterator for main (Negishi/Nash) iterations
LDV35(all_te) all technologies describing light duty vehicles
learnte_dyn35(all_te) technologies with endogenous learning-by-doing - transport module additions
modules all the available modules
notIn_emi2te_dyn35(all_enty, all_enty, all_te, all_enty) remove emission pathways: CH4 from nat. gas
notIn_entyFe2Sector_dyn35(all_enty, emi_sectors) mapping final energy to transport sector
notIn_entyFeTrans_dyn35(all_enty) final energy types - transport module additions
notIn_se2fe_dyn35(all_enty, all_enty, all_te) gas techs for transport not used in complex
opTimeYr actual life time of ??? in years
pc2te(all_enty, all_enty, all_te, all_enty) mapping for own consumption of technologies
ppfEn(all_in) Primary production factors energy
ppfen_dyn35(all_in) all energy inputs because of unit conversion - transport module additions
ppfenFromUe(all_in) all ppfEn that are equivalent to UE - is filled automatically from the content of fe2ue
regi(all_regi) all regions used in the solution process
regi_group(ext_regi, all_regi) region groups (regions that together corresponds to a H12 region)
rlf cost levels of fossil fuels
se2fe(all_enty, all_enty, all_te) map secondary energy to end-use energy using a technology
set regi_nucscen(all_regi) regions which nucscen applies to
t(ttot) modeling time, usually starting in 2005, but later for fixed delay runs
tall time index
te(all_te) energy technologies
te_dyn35(all_te) technologies - transport module additions
te2rlf(all_te, rlf) all technologies to grades
teAdj(all_te) technologies with adjustment costs on capacity additions
teEs(all_teEs) ES technologies which are actually used (to be filled by module realizations).
teEs_dyn35(all_teEs) technologies - transport module additions
teFe2rlf(all_te, rlf) mapping for final energy to grades
teFe2rlf_dyn35(all_te, rlf) mapping for final energy to grades - transport module additions
teLearn(all_te) Learning technologies (investment costs can be reduced)
teue2rlf(all_te, rlf) mapping for ES production technologies to grades
teue2rlf_dyn35(all_te, rlf) mapping for ES production technologies to grades
transType_35 transport type
ttot(tall) time index with spin up
ue2ppfen(all_enty, all_in) matching UE in ESM to ppfEn in MACRO
ue2ppfen_dyn35(all_enty, all_in) matching ES in ESM to ppfEn in MACRO

Authors

Alois Dirnaichner, Robert Pietzcker, Marianna Rottoli

See Also

01_macro, 04_PE_FE_parameters, 40_techpol, core

References