The peatland module calculates GHG emissions from degrading/drained peatlands.
Description | Unit | A | B | |
---|---|---|---|---|
pcm_land (j, land) |
Land area in previous time step including possible changes after optimization | \(10^6 ha\) | x | |
pcm_land_forestry (j, type32) |
Forestry land pools | \(10^6 ha\) | x | |
pm_climate_class (j, clcl) |
Koeppen-Geiger climate classification on the simulation cluster level | \(1\) | x | |
pm_interest (t_all, i) |
Interest rate in each region and timestep | \(\%/yr\) | x | |
vm_emissions_reg (i, emis_source, pollutants) |
Regional emissions by source and gas after technical mitigation N CH4 C | \(Tg/yr\) | x | x |
vm_land (j, land) |
Land area of the different land types | \(10^6 ha\) | x | |
vm_land_forestry (j, type32) |
Forestry land pools | \(10^6 ha\) | x | |
vm_landexpansion (j, land) |
Land expansion | \(10^6 ha\) | x | |
vm_landexpansion_forestry (j, type32) |
Forestry land expansion | \(10^6 ha\) | x | |
vm_landreduction (j, land) |
Land reduction | \(10^6 ha\) | x | |
vm_landreduction_forestry (j, type32) |
Forestry land reduction | \(10^6 ha\) | x |
Description | Unit | |
---|---|---|
vm_peatland_cost (j) |
One-time and recurring cost of managed peatland | \(10^6 USD_{05MER}/yr\) |
In this realization, peatlands do not exist. Therefore, GHG emissions from degrading peatlands are assumed zero.
Limitations Peatland area and associated GHG emissions are fixed to zero.
In this realization, the state of peatlands is modelled based on the methodology described in Humpenöder et al. (2020).
The initial map for intact, degraded and rewetted peatland is based on the Global Peatland Map 2.0 and the Global Peatland Database, both for the year 2022. Therefore, it is advised to set s58_fix_peatland
to 2020
when using this realisation (2022 is not available as time step in MAgPIE). Future peatland dynamics are estimated by multiplying changes in managed land with a peatland scaling factor. GHG emissions from drained and rewetted peatlands as well as from peat extraction are calculated based on GHG emission factors. In this realisation, peatland GHG emission factors for boreal and tropical climates are based on Hiraishi et al. (2014) and Wilson, Blain, and Couwenberg (2016). Peatland GHG emission factors for temperate climates are based on more recent estimates from Tiemeyer et al. (2020). Assumed rules for changes in peatland area: Sum over total peatland area (degraded, intact, rewetted) is assumed constant. Intact peatland area can only decrease. Degraded peatland area (crop, past, forestry and unused) depends on managed land. Area for peat extraction (peatExtract) is fixed. Rewetted and intact peatland have the same GHG emission factors, which avoids that intact is converted to rewetted peatland area.
Constraint for constant total peatland area over time:
\[\begin{multline*} \sum_{land58} v58\_peatland(j2,land58) = \sum_{land58} pc58\_peatland(j2,land58) \end{multline*}\]
Peatland area change:
\[\begin{multline*} v58\_peatlandChange(j2,land58) = v58\_peatland(j2,land58)-pc58\_peatland(j2,land58) \end{multline*}\]
Managed land area:
\[\begin{multline*} v58\_manLand(j2,manPeat58) = m58\_LandMerge(vm\_land,vm\_land\_forestry,"j2") \end{multline*}\]
Managed land area expansion and reduction:
\[\begin{multline*} v58\_manLandExp(j2,manPeat58) = m58\_LandMerge(vm\_landexpansion,vm\_landexpansion\_forestry,"j2") \end{multline*}\]
\[\begin{multline*} v58\_manLandRed(j2,manPeat58) = m58\_LandMerge(vm\_landreduction,vm\_landreduction\_forestry,"j2") \end{multline*}\]
Future peatland dynamics (v58_peatland
) depend on changes in managed land (v58_manLandExp
, v58_manLandRed
), multiplied with corresponding scaling factors for expansion (v58_scalingFactorExp
) and reduction (p58_scalingFactorRed
). The scaling factor for expansion makes sure that in case the full cell area consists of managed land (cropland, pasture, forestry plantations), the full peatland area is drained. Likewise, the scaling factor for reduction makes sure that in case no area is used for managed land, managed peatland (manPeat58
) is reduced to zero. In case managed land remains unchanged, also managed peatland remains unchanged.
\[\begin{multline*} v58\_peatland(j2,manPeat58) = pc58\_peatland(j2,manPeat58) + v58\_manLandExp(j2,manPeat58) \cdot v58\_scalingFactorExp(j2,manPeat58) - v58\_manLandRed(j2,manPeat58) \cdot \sum_{ct} p58\_scalingFactorRed(ct,j2,manPeat58) \end{multline*}\]
Peatland scaling factor for expansion: (maxPeatland - totalManagedPeatland) / (maxLand - totalManagedLand). See macro m58_LandLeft
for details.
\[\begin{multline*} v58\_scalingFactorExp(j2,manPeat58) = \left(\frac{m58\_LandLeft(pc58\_peatland,"land58",v58\_peatland,pc58\_peatland) }{ m58\_LandLeft(pcm\_land,"land",v58\_manLand,pc58\_manLand)}\right) \$\left(m58\_LandLeft(pc58\_peatland,"land58",pc58\_peatland,pc58\_peatland) > 1e-8 \& m58\_LandLeft(pcm\_land,"land",pc58\_manLand,pc58\_manLand) > 1e-8\right) + 0\$\left(m58\_LandLeft(pc58\_peatland,"land58",pc58\_peatland,pc58\_peatland) \leq 1e-8 OR m58\_LandLeft(pcm\_land,"land",pc58\_manLand,pc58\_manLand) \leq 1e-8\right) \end{multline*}\]
Costs for peatland degradation and rewetting
\[\begin{multline*} vm\_peatland\_cost(j2) = \sum_{cost58} v58\_peatland\_cost\_annuity(j2,cost58) + v58\_peatland(j2,"rewetted") \cdot \sum_{ct} i58\_cost\_rewet\_recur(ct) + \sum_{manPeat58} v58\_peatland(j2,manPeat58) \cdot \sum_{ct} i58\_cost\_drain\_recur(ct) \end{multline*}\]
\[\begin{multline*} v58\_peatland\_cost\_annuity(j2,cost58) \geq \left(- v58\_peatlandChange(j2,"intact") \cdot \sum_{ct} i58\_cost\_drain\_intact\_onetime(ct)\right)\$sameas(cost58,"drain\_intact") + \left(- v58\_peatlandChange(j2,"rewetted") \cdot \sum_{ct} i58\_cost\_drain\_rewet\_onetime(ct)\right)\$sameas(cost58,"drain\_rewetted") + \left(v58\_peatlandChange(j2,"rewetted") \cdot \sum_{ct} i58\_cost\_rewet\_onetime(ct)\right)\$sameas(cost58,"rewet") \cdot \sum_{cell(i2,j2),ct}\left(\frac{pm\_interest(ct,i2)}{\left(1+pm\_interest(ct,i2)\right)}\right) \end{multline*}\]
Detailed peatland GHG emissions
\[\begin{multline*} v58\_peatland\_emis(j2,land58,emis58) = \sum_{clcl58}\left( v58\_peatland(j2,land58) \cdot p58\_mapping\_cell\_climate(j2,clcl58) \cdot f58\_ipcc\_wetland\_ef(clcl58,land58,emis58)\right) \end{multline*}\]
Aggregation of detailed peatland GHG emissions for interface vm_emissions_reg
\[\begin{multline*} vm\_emissions\_reg(i2,"peatland",poll58) = \sum_{cell(i2,j2),land58,emisSub58\_to\_poll58(emisSub58,poll58)}\left( v58\_peatland\_emis(j2,land58,emisSub58)\right) \end{multline*}\]
Peatland scaling factor for reduction: currentPeatland / currentManagedLand
p58_scalingFactorRed(t,j,manPeat58) =
(pc58_peatland(j,manPeat58)/pc58_manLand(j,manPeat58))
$(pc58_peatland(j,manPeat58) > 1e-8 AND pc58_manLand(j,manPeat58) > 1e-8)
+ 0$(pc58_peatland(j,manPeat58) <= 1e-8 OR pc58_manLand(j,manPeat58) <= 1e-8);
Limitations Peatland area and GHG emissions are fixed to 2022 levels for the historic period, depending on
s58_fix_peatland
. Organic carbon stocks in peatlands are not accounted for.
Description | Unit | A | B | |
---|---|---|---|---|
f58_ipcc_wetland_ef (clcl58, land58, emis58) |
Wetland emission factors | \(Tg/yr\) | x | |
f58_peatland_area (j, land58) |
Peatland area | \(10^6 ha\) | x | |
i58_cost_drain_intact_onetime (t) |
One-time costs for drainage of intact peatland | \(USD_{05MER}/ha\) | x | |
i58_cost_drain_recur (t) |
Recurring costs for drained and managed peatlands | \(USD_{05MER}/ha\) | x | |
i58_cost_drain_rewet_onetime (t) |
One-time costs for drainage of rewetted peatland | \(USD_{05MER}/ha\) | x | |
i58_cost_rewet_onetime (t) |
One-time costs for peatland rewetting | \(USD_{05MER}/ha\) | x | |
i58_cost_rewet_recur (t) |
Recurring costs for rewetted peatland | \(USD_{05MER}/ha\) | x | |
p58_mapping_cell_climate (j, clcl58) |
Mapping between cells and climate regions | \(binary\) | x | |
p58_scalingFactorRed (t, j, manPeat58) |
Scaling factor for peatland reduction | \(1\) | x | |
pc58_manLand (j, manPeat58) |
Managed land area | \(10^6 ha\) | x | |
pc58_peatland (j, land58) |
Peatland area | \(10^6 ha\) | x | |
q58_manLand (j, manPeat58) |
Managed land area | \(10^6 ha\) | x | |
q58_manLandExp (j, manPeat58) |
Managed land area expansion | \(10^6 ha\) | x | |
q58_manLandRed (j, manPeat58) |
Managed land area reduction | \(10^6 ha\) | x | |
q58_peatland (j) |
Constraint for total peatland area | \(10^6 ha\) | x | |
q58_peatland_cost (j) |
One-time and recurring cost of peatland conversion and management | \(10^6 USD_{05MER}/yr\) | x | |
q58_peatland_cost_annuity (j, cost58) |
Annuity costs for peatland conversion in the current timestep | \(10^6 USD_{05MER}/yr\) | x | |
q58_peatland_emis (i, poll58) |
GHG emissions from managed peatland | \(Tg/yr\) | x | |
q58_peatland_emis_detail (j, land58, emis58) |
Detailed GHG emissions from peatlands | \(Tg/yr\) | x | |
q58_peatlandChange (j, land58) |
Peatland area change | \(10^6 ha\) | x | |
q58_peatlandMan (j, manPeat58) |
Change of managed peatland area | \(10^6 ha\) | x | |
q58_scalingFactorExp (j, manPeat58) |
Scaling factor for peatland expansion | \(1\) | x | |
s58_cost_drain_intact_onetime | One-time costs for drainage of intact peatland | \(USD_{05MER}/ha\) | x | |
s58_cost_drain_recur | Recurring costs for drained and managed peatlands | \(USD_{05MER}/ha\) | x | |
s58_cost_drain_rewet_onetime | One-time costs for drainage of rewetted peatland | \(USD_{05MER}/ha\) | x | |
s58_cost_rewet_onetime | One-time costs for peatland rewetting | \(USD_{05MER}/ha\) | x | |
s58_cost_rewet_recur | Recurring costs for rewetted peatland | \(USD_{05MER}/ha\) | x | |
s58_fix_peatland | Year indicating until when peatland area should be fixed | \(year\) | x | |
s58_rewetting_switch | Peatland rewetting on (Inf) or off | \(0\) | x | |
v58_manLand (j, manPeat58) |
Managed land area | \(10^6 ha\) | x | |
v58_manLandExp (j, manPeat58) |
Managed land area expansion | \(10^6 ha\) | x | |
v58_manLandRed (j, manPeat58) |
Managed land area reduction | \(10^6 ha\) | x | |
v58_peatland (j, land58) |
Peatland area | \(10^6 ha\) | x | |
v58_peatland_cost_annuity (j, cost58) |
Annuity costs for peatland conversion in the current timestep | \(10^6 USD_{05MER}/yr\) | x | |
v58_peatland_emis (j, land58, emis58) |
Detailed GHG peatland GHG emissions | \(Tg/yr\) | x | |
v58_peatlandChange (j, land58) |
Peatland area change | \(10^6 ha\) | x | |
v58_scalingFactorExp (j, manPeat58) |
Scaling factor for peatland expansion | \(1\) | x |
description | |
---|---|
cell(i, j) | number of LPJ cells per region i |
clcl | climate classification types |
clcl_mapping(clcl, clcl58) | Mapping between detailed and simple climate classes |
clcl58 | simple climate classes |
cost58 | annunity cost categories |
ct(t) | Current time period |
drained58(land58) | Drained peatland categories |
emis_source | Emission sources |
emis58 | Wetland emission types |
emisSub58_to_poll58(emisSub58, poll58) | Mapping |
emisSub58(emis58) | Wetland emission types |
factors | factors included in factor requirements |
i | all economic regions |
i2(i) | World regions (dynamic set) |
j | number of LPJ cells |
j2(j) | Spatial Clusters (dynamic set) |
land | Land pools |
land58 | Peatland categories |
manPeat58(land58) | Drained and managed peatland categories |
poll58(pollutants) | Wetland emissions that can be taxed |
pollutants(pollutants_all) | subset of pollutants_all that can be taxed |
t_all(t_ext) | 5-year time periods |
t(t_all) | Simulated time periods |
type | GAMS variable attribute used for the output |
type32 | plantation type |
Florian Humpenöder, Debbora Leip
10_land, 11_costs, 12_interest_rate, 32_forestry, 45_climate, 56_ghg_policy