The 35_transport module calculates the transport demand composition as a part of the CES structure.
Description | Unit | A | B | |
---|---|---|---|---|
cm_startyear | first optimized modelling time step | \(year\) | x | |
pm_boundCapEV (tall, all_regi) |
installed capacity of electric vehicles | x | ||
pm_cesdata (tall, all_regi, all_in, cesParameter) |
parameters of the CES function | x | ||
pm_cesdata_sigma (ttot, all_in) |
elasticities of substitution | x | x | |
pm_cf (tall, all_regi, all_te) |
Installed capacity availability - capacity factor (fraction of the year that a plant is running) | x | ||
pm_esCapCost (tall, all_regi, all_teEs) |
Capital energy cost per unit of consumption for end-use capital (energy service layer) | x | ||
pm_fe2es (tall, all_regi, all_teEs) |
Conversion factor from final energies to energy services. Default is 1. | x | ||
pm_gdp (tall, all_regi) |
GDP data | \(trn US\$ 2005\) | x | |
pm_pop (tall, all_regi) |
population data | \(bn people\) | x | |
pm_shFeCes (ttot, all_regi, all_enty, all_in, all_teEs) |
Final energy shares for CES nodes | x | ||
pm_vintage_in (all_regi, opTimeYr, all_te) |
historical vintage structure. | \(arbitrary\) | x | |
vm_cap (tall, all_regi, all_te, rlf) |
net total capacities | x | ||
vm_demFeForEs (ttot, all_regi, all_enty, all_esty, all_teEs) |
Final energy which will be used in the ES layer. | x | ||
vm_prodUe (ttot, all_regi, all_enty, all_enty, all_te) |
Useful energy production | \(TWa\) | x |
Description | Unit | |
---|---|---|
pm_bunker_share_in_nonldv_fe (tall, all_regi) |
share of bunkers in non-LDV transport, i.e. fedie | |
vm_shUePeT (ttot, all_regi, all_te) |
share of the Uepet production from a certain LDV type in the total Uepet production. Unit: percent |
Transport demand composition is calculated for LDV categories, electric trains and an aggregate category HDV. The CES transport branch has 3 nodes (LDV, HDV and electric trains). LDVs are in turn divided into ICE cars, BEVs, FCEVs. The CES branch is in useful energy units (EJ). A correction for the different efficiency of LDV powertrains is therefore included. HDVs include both passenger and freight modes. Vehicles capacity addition for LDVs is calculated in REMIND.
p35_pass_FE_share_transp(ttot,all_regi) "Share of 'non-LDV passenger FE' in 'total non-LDV FE. Unit: share [0..1]"
p35_pass_nonLDV_ES_efficiency(ttot,all_regi) "Non-LDV passenger energy service per non-LDV FE. Unit: bn pkm/EJ"
p35_passLDV_ES_efficiency(ttot,all_regi) "LDV passenger energy service per non-LDV FE. Only correct if applied to CES-input, as BEV and H2FCV have higher efficiencies. Unit: bn pkm/EJ"
p35_freight_ES_efficiency(ttot,all_regi) "Freight energy service per freight FE. Unit: bn tkm/EJ"
p35_pass_FE_target_share "The target share for the harmonization of non-LDV passenger FE (p35_pass_FE_share_transp). Unit: share [0..1]"
p35_harmonizing_year "Year when full harmonization of shares and efficiencies would be reached."
p35_share_seliq_t(ttot,all_regi) "share of liquids used for transport sector (fedie + fepet). Unit 0..1"
p35_share_seh2_t(ttot,all_regi) "share of hydrogen used for transport sector (feh2t). Unit 0..1"
p35_share_seel_t(ttot,all_regi) "Share of electricity used for transport sector (feelt). Unit 0..1"
;
\[\begin{multline*} \sum_{fe2ue(entyFe,"uepet",te2)\$LDV35(te2)} vm\_prodUe(t,regi,entyFe,"uepet",te2) \cdot \frac{ vm\_shUePeT(t,regi,te) }{ 100 } = \sum_{fe2ue(entyFe,"uepet",te)} vm\_prodUe(t,regi,entyFe,"uepet",te) \end{multline*}\]
\[\begin{multline*} \sum_{fe2ue(entyFe,"uepet",te)\$LDV35(te)} vm\_shUePeT(t,regi,te) = 100 \end{multline*}\]
Limitations Not very flexible implementation of new transport alternatives
Transport demand composition is calculated based on the EDGE-transport model. This realization allows the EDGE-transport model to interact with REMIND. EDGE is set to run in between iterations. EDGE runs every 5 iterations, to allow REMIND to stabilize in between. Transport structure is defined in detail in EDGE, and only aggregate values are then fed to REMIND. The CES transport branch has 2 nodes (passenger and freight transport) each divided into Short-Medium distance and Long distance options. The CES branch is in energy services units (passenger or ton km). Bunkers (Shipping and Internaitional Aviation) represent the Long distance CES leaves. Vehicles capacity addition is calculated in EDGE (REMIND has no vintage tracking).
Limitations EDGE-transport runs in between iterations and is therefore not fully optimized.
Description | Unit | A | B | |
---|---|---|---|---|
f35_factorVintages (all_regi, opTimeYr, all_te) |
factor to be able to better reproduce the 2010 decrease of liquids and solids demand | x | ||
f35_transp_eff (all_regi, char35) |
read-in of regionalized transport mobility shares and efficiencies | x | ||
p35_cesdata_sigma (all_in) |
substitution elasticities | x | x | |
p35_demByTech (tall, all_regi, all_GDPscen, EDGE_scenario_all, all_enty, all_in, all_teEs) |
Aggregate FE Demand per transport fuel technology | \(TWa\) | x | |
p35_esCapCost (tall, all_regi, all_GDPscen, EDGE_scenario_all, all_teEs) |
Capital costs for the transport system | \(\$/pkm or \$/tkm\) | x | |
p35_fe2es (tall, all_regi, all_GDPscen, EDGE_scenario_all, all_teEs) |
Aggregate energy efficiency of transport fuel technologies | \(trn pkm/Twa or trn tkm/Twa\) | x | |
p35_freight_ES_efficiency (ttot, all_regi) |
Freight energy service per freight FE. Unit: bn tkm/EJ | x | ||
p35_harmonizing_year | Year when full harmonization of shares and efficiencies would be reached. | x | ||
p35_pass_FE_share_transp (ttot, all_regi) |
Share of ‘non-LDV passenger FE’ in ’total non-LDV FE. Unit: share | \(0..1\) | x | |
p35_pass_FE_target_share | The target share for the harmonization of non-LDV passenger FE (p35_pass_FE_share_transp). Unit: share | \(0..1\) | x | |
p35_pass_nonLDV_ES_efficiency (ttot, all_regi) |
Non-LDV passenger energy service per non-LDV FE. Unit: bn pkm/EJ | x | ||
p35_passLDV_ES_efficiency (ttot, all_regi) |
LDV passenger energy service per non-LDV FE. Only correct if applied to CES-input, as BEV and H2FCV have higher efficiencies. Unit: bn pkm/EJ | x | ||
p35_share_seel_t (ttot, all_regi) |
Share of electricity used for transport sector (feelt). Unit 0..1 | x | ||
p35_share_seh2_t (ttot, all_regi) |
share of hydrogen used for transport sector (feh2t). Unit 0..1 | x | ||
p35_share_seliq_t (ttot, all_regi) |
share of liquids used for transport sector (fedie + fepet). Unit 0..1 | x | ||
p35_shFeCes (tall, all_regi, all_GDPscen, EDGE_scenario_all, all_enty, all_in, all_teEs) |
Shares of | x | ||
p35_valconv | temporary parameter used to set convergence between regions | x | ||
q35_shUePeT (ttot, all_regi, all_te) |
calculate share of the Uepet production from a certain LDV type in the total Uepet production | x | ||
q35_shUePeTbal (ttot, all_regi) |
shares sum must be equal to 100 | x |
description | |
---|---|
adjte_dyn35(all_te) | technologies with adjustment costs on capacity additions - transport module additions |
all_enty | all types of quantities |
all_esty | energy services |
all_GDPscen | all possible GDP scenarios |
all_in | all inputs and outputs of the CES function |
all_regi | all regions |
all_te | all energy technologies, including from modules |
all_teEs | energy service technologies |
ces_transport_dyn35(all_in, all_in) | CES tree structure - edge transport |
ces_transport_dyn38(all_in, all_in) | CES tree structure - transport |
cesOut2cesIn(all_in, all_in) | CES tree structure |
cesParameter | parameters of the CES functions and for calibration |
char35 | characteristics of transport technologies |
cm_GDPscen | cm_GDPscen as set for use in GDX |
EDGE_scenario(EDGE_scenario_all) | Selected EDGE-T scenario |
EDGE_scenario_all | EDGE-T scenarios |
emi2te(all_enty, all_enty, all_te, all_enty) | map emissions to technologies |
emi2te_dyn35(all_enty, all_enty, all_te, all_enty) | add. emission pathways: CH4 from nat. gas |
enty(all_enty) | all types of quantities |
enty_dyn35(all_enty) | all types of quantities - transport module additions |
entyFe(all_enty) | final energy types. Calculated in sets_calculations |
entyFeTrans(all_enty) | final energy types from transport sector |
entyFeTrans_dyn35(all_enty) | final energy types - transport module additions |
entyUe(all_enty) | Useful energy types |
entyUe_dyn35(all_enty) | Energy service types |
es2ppfen(all_esty, all_in) | matching ES in ESM to ppfEn in MACRO |
es2ppfen_dyn35(all_esty, all_in) | matching ES to ppfEn in MACRO |
esty(all_esty) | energy service types. Have to be added by modules. |
esty_dyn35(all_esty) | Energy service types |
FE_Elec_fety35(all_enty) | set for reporting |
FE_Transp_fety35(all_enty) | set for reporting |
fe_transport_liquids_dyn35(all_enty) | liquids used by the transport module |
fe2ces_dyn35(all_enty, all_in, all_teEs) | map FE carriers to CES nodes via appliances |
fe2es(all_enty, all_esty, all_teEs) | map FE carriers to ES via ES technologies |
fe2es_dyn35(all_enty, all_esty, all_teEs) | map FE carriers to ES via appliances |
fe2ue(all_enty, all_enty, all_te) | map FE carriers to ES via appliances |
fe2ue_dyn35(all_enty, all_enty, all_te) | map FE carriers to ES via appliances |
in(all_in) | All inputs and outputs of the CES function |
in_dyn35(all_in) | all inputs and outputs of the CES function - transport module additions |
iteration | iterator for main (Negishi/Nash) iterations |
LDV35(all_te) | all technologies describing light duty vehicles |
learnte_dyn35(all_te) | technologies with endogenous learning-by-doing - transport module additions |
modules | all the available modules |
opTimeYr | actual life time of ??? in years |
ppfEn(all_in) | Primary production factors energy |
ppfen_dyn35(all_in) | all energy inputs because of unit conversion - transport module additions |
regi(all_regi) | all regions used in the solution process |
rlf | cost levels of fossil fuels |
se2fe(all_enty, all_enty, all_te) | map secondary energy to end-use energy using a technology |
se2fe_dyn35(all_enty, all_enty, all_te) | map secondary energy to end-use energy using a technology - transport module additions |
set | regi_nucscen(all_regi) regions which nucscen applies to |
t(ttot) | modeling time, usually starting in 2005, but later for fixed delay runs |
tall | time index |
te(all_te) | energy technologies |
te_dyn35(all_te) | technologies - transport module additions |
teAdj(all_te) | technologies with adjustment costs on capacity additions |
teEs(all_teEs) | ES technologies which are actually used (to be filled by module realizations). |
teEs_dyn35(all_teEs) | technologies - transport module additions |
teFe2rlf(all_te, rlf) | mapping for final energy to grades |
teFe2rlf_dyn35(all_te, rlf) | mapping for final energy to grades - transport module additions |
teLearn(all_te) | Learning technologies (investment costs can be reduced) |
teue2rlf(all_te, rlf) | mapping for ES production technologies to grades |
teue2rlf_dyn35(all_te, rlf) | mapping for ES production technologies to grades |
ttot(tall) | time index with spin up |
ue2ppfen(all_enty, all_in) | matching UE in ESM to ppfEn in MACRO |
ue2ppfen_dyn35(all_enty, all_in) | matching ES in ESM to ppfEn in MACRO |
Alois Dirnaichner, Robert Pietzcker, Marianna Rottoli
40_techpol, 45_carbonprice, core