MAgPIE - An Open Source land-use modeling framework

4.6.4

created with goxygen 1.3.2

Nitrogen (51_nitrogen)

Description

The nitrogen module calculates nitrogeneous emissions before technical mitigation, including N2O, NOx, NH3, NO3- and N2. Sources of these emissions include manure, inorganic fertilizers, crop residues, soil organic matter, and indirect emissions.

Interfaces

Interfaces to other modules

Input

module inputs (A: off | B: rescaled_jan21)
  Description Unit A B
im_maccs_mitigation
(t, i, emis_source, pollutants)
Technical mitigation of GHG emissions \(percent\) x
vm_emissions_reg
(i, emis_source, pollutants)
Regional emissions by source and gas after technical mitigation N CH4 C \(Tg/yr\) x x
vm_manure
(i, kli, awms, npk)
Calculation of manure excreted in confinements \(10^6 t X\) x
vm_manure_confinement
(i, kli, awms_conf, npk)
Manure excreted in confinements managed in different awms \(10^6 t X\) x
vm_manure_recycling
(i, npk)
Manure being recycled to croplands \(10^6 t X\) x
vm_nr_eff
(i)
Cropland nutrient uptake efficiency \(Tg N/yr\) x
vm_nr_eff_pasture
(i)
Pasture nutrient uptake efficiency \(Tg N/yr\) x
vm_nr_inorg_fert_reg
(i, land_ag)
Inorganic fertilizer application \(Tg N/yr\) x
vm_nr_som
(j)
Release of soil organic matter \(Mt N/yr\) x
vm_res_ag_burn
(i, kcr, attributes)
Residues burned on fields in respective attribute units DM GJ Nr P K WM C \(10^6 tX\) x
vm_res_recycling
(i, npk)
Residues recycled to croplands in respective nutrients Nr P K units \(10^6 tX\) x

Output

Realizations

(A) off

Emissions are set to zero.

Limitations There are no known limitations.

(B) rescaled_jan21

The nitrogen module calculates nitrogeneous emissions before technical mitigation, including N2O, NOx, NH3, NO3- and N2. The model receives information on nitrogen flows from 50_nr_soil_budget, 55_awms, 18_residues, 59_som, and it provides the emissions to the module 56_ghg_policy. Emissions factors estimates are largely based on the IPCC 2006 Guidelines for National Greenhouse Gas Inventories (IPCC (2006).), as described in (Bodirsky et al. (2012).).

Nitrogeneous emissions stem from manure applied to croplands, inorganic fertilizers, crop residues decaying on fields, the burning of agricultural residues, soil organic matter loss, animal waste management, and manure excreted on pasture land. Additionally, part of the NH3 and NOx emissions as well as leached NO3 later result in indirect emissions of N2O when they are redeposited, nitrified and dinitrified.

Emissions are rescaled using the nitrogen uptake efficiency. This is done to keep consistency of emissions with nitrogen surplus and take account for improved emission factors when NUE increases. The marginal abatement cost curves (MACCs) are already applied at the estimation of the NUE in module 50_nr_soil_budget.

Manure applied to croplands:

\[\begin{multline*} vm\_emissions\_reg(i2,"man\_crop",n\_pollutants\_direct) = \frac{ vm\_manure\_recycling(i2,"nr") }{ \left(1-s51\_snupe\_base\right) } \cdot \left(1-vm\_nr\_eff(i2)\right) \cdot \sum_{ct} i51\_ef\_n\_soil(ct,i2,n\_pollutants\_direct,"man\_crop") \end{multline*}\]

inorganic fertilizers:

\[\begin{multline*} vm\_emissions\_reg(i2,"inorg\_fert",n\_pollutants\_direct) = \frac{ vm\_nr\_inorg\_fert\_reg(i2,"crop") }{ \left(1-s51\_snupe\_base\right) } \cdot \left(1-vm\_nr\_eff(i2)\right) \cdot \sum_{ct} i51\_ef\_n\_soil(ct,i2,n\_pollutants\_direct,"inorg\_fert") +\frac{ vm\_nr\_inorg\_fert\_reg(i2,"past") }{ \left(1-s51\_nue\_pasture\_base\right) } \cdot \left(1-vm\_nr\_eff\_pasture(i2)\right) \cdot \sum_{ct} i51\_ef\_n\_soil(ct,i2,n\_pollutants\_direct,"inorg\_fert") \end{multline*}\]

crop residues decaying on fields:

\[\begin{multline*} vm\_emissions\_reg(i2,"resid",n\_pollutants\_direct) = vm\_res\_recycling(i2,"nr") \cdot \frac{ \sum_{ct} i51\_ef\_n\_soil(ct,i2,n\_pollutants\_direct,"resid") }{ \left(1-s51\_snupe\_base\right) } \cdot \left(1-vm\_nr\_eff(i2)\right) \end{multline*}\]

emissions from burning crop residues, N2O and NOx

\[\begin{multline*} vm\_emissions\_reg(i2,"resid\_burn",n\_pollutants\_direct) = \sum_{kcr} vm\_res\_ag\_burn(i2,kcr,"dm") \cdot f51\_ef\_resid\_burn(n\_pollutants\_direct) \end{multline*}\]

soil organic matter loss:

\[\begin{multline*} vm\_emissions\_reg(i2,"som",n\_pollutants\_direct) = \sum_{cell(i2,j2)}vm\_nr\_som(j2) \cdot \frac{ \sum_{ct} i51\_ef\_n\_soil(ct,i2,n\_pollutants\_direct,"som") }{ \left(1-s51\_snupe\_base\right) } \cdot \left(1-vm\_nr\_eff(i2)\right) \end{multline*}\]

animal waste management Here we apply the marginal abatement cost curves to the emissions of all N pollutants. The measures (e.g. decreased storage time, coverage) are not specific to N2O and assumed to apply also to NH3 and other losses.

\[\begin{multline*} vm\_emissions\_reg(i2,"awms",n\_pollutants\_direct) = \sum_{kli,awms\_conf}\left( vm\_manure\_confinement(i2,kli,awms\_conf,"nr") \cdot f51\_ef3\_confinement(i2,kli,awms\_conf,n\_pollutants\_direct)\right) \cdot \left(1-\sum_{ct} im\_maccs\_mitigation(ct,i2,"awms","n2o\_n\_direct")\right) \end{multline*}\]

and manure excreted on pasture land:

\[\begin{multline*} vm\_emissions\_reg(i2,"man\_past",n\_pollutants\_direct) = \frac{ \sum_{awms\_prp,kli}\left( vm\_manure\left(i2, kli, awms\_prp, "nr"\right) \cdot f51\_ef3\_prp(i2,n\_pollutants\_direct,kli)\right) }{ \left(1-s51\_nue\_pasture\_base\right) } \cdot \left(1-vm\_nr\_eff\_pasture(i2)\right) \end{multline*}\]

Indirect emissions from NH3, NOx and NO3:

\[\begin{multline*} vm\_emissions\_reg(i2,emis\_source\_n51,"n2o\_n\_indirect") = \sum_{pollutant\_nh3no2\_51}vm\_emissions\_reg(i2,emis\_source\_n51,pollutant\_nh3no2\_51) \cdot f51\_ipcc\_ef("ef\_4","best") + vm\_emissions\_reg(i2,emis\_source\_n51,"no3\_n") \cdot f51\_ipcc\_ef("ef\_5","best") \end{multline*}\]

Limitations There are no known limitations.

Definitions

Objects

module-internal objects (A: off | B: rescaled_jan21)
  Description Unit A B
f51_ef_n_soil
(t_all, i, n_pollutants_direct, emis_source_n_cropsoils51)
ipcc emission factors for various emission types X \(tX-N/tN\) x
f51_ef_resid_burn
(n_pollutants_direct)
emission factor for residual burning \(tX-N/t DM\) x
f51_ef3_confinement
(i, kli, awms_conf, n_pollutants_direct)
emissions from manure managed in confinement for various emission types X \(tX-N/tN\) x
f51_ef3_prp
(i, n_pollutants_direct, kli)
emissions from manure on pasture range and paddocks for various emission types X \(tX-N/tN\) x
f51_ipcc_ef
(ipcc_ef51, emis_uncertainty51)
ipcc emission factors for various emission types X \(tX-N/tN\) x
i51_ef_n_soil
(t, i, n_pollutants_direct, emis_source_n_cropsoils51)
emission factors for nitrogen emissions from cropland soils \(tX-N/tN\) x
q51_emissionbal_awms
(i, n_pollutants_direct)
estimates various emission types X from animal waste management systems before technical mitigation \(Mt X-N\) x
q51_emissionbal_man_past
(i, n_pollutants_direct)
estimates various emission types X from manure on pasture land before technical mitigation \(Mt X-N\) x
q51_emissions_indirect_n2o
(i, emis_source_n51)
estimates various emission types X from volatilisation and leaching \(Mt X-N\) x
q51_emissions_inorg_fert
(i, n_pollutants_direct)
estimates various emission types X from inorganic fertilizer before technical mitigation \(Mt X-N\) x
q51_emissions_man_crop
(i, n_pollutants_direct)
estimates various emission types X from manure on cropland before technical mitigation \(Mt X-N\) x
q51_emissions_resid
(i, n_pollutants_direct)
estimates various emission types X from residues before technical mitigation \(Mt X-N\) x
q51_emissions_resid_burn
(i, n_pollutants_direct)
estimates various emission types X from residues burning \(Mt X-N\) x
q51_emissions_som
(i, n_pollutants_direct)
estimates various emission types X from soil organic matter loss before technical mitigation \(Mt X-N\) x
s51_nue_pasture_base assumption on implicit SNuPE in ipcc guidelines \(1\) x
s51_snupe_base assumption on implicit SNuPE in ipcc guidelines \(1\) x

Sets

sets in use
  description
attributes Product attributes characterizing a product (such as weight or energy content)
awms animal waste management systems
awms_conf animal waste management systems in confinements
awms_prp(awms) animal waste management systems pasture range and paddock
cell(i, j) number of LPJ cells per region i
ct(t) Current time period
emis_source Emission sources
emis_source_n_cropsoils51(emis_source) activities that lead to emissions
emis_source_n51(emis_source) Emission sources from agriculture
emis_uncertainty51 Different estimates for emission parameters
factors factors included in factor requirements
i all economic regions
i2(i) World regions (dynamic set)
ipcc_ef51 ipcc Emission factors
j number of LPJ cells
j2(j) Spatial Clusters (dynamic set)
kcr(kve) Cropping activities
kli(kap) Livestock products
land Land pools
land_ag(land) Agricultural land pools
n_pollutants_direct(n_pollutants) subset of n pollutants
n_pollutants(pollutants) subset of n pollutants
npk(nutrients) Plant nutrients
pollutant_nh3no2_51(n_pollutants_direct) nitrogen emissions relevant for deposition
pollutants(pollutants_all) subset of pollutants_all that can be taxed
t_all(t_ext) 5-year time periods
t_past(t_all) Timesteps with observed data
t(t_all) Simulated time periods
type GAMS variable attribute used for the output

Authors

Benjamin Leon Bodirsky

See Also

18_residues, 50_nr_soil_budget, 55_awms, 56_ghg_policy, 57_maccs, 59_som

References

Bodirsky, Benjamin Leon, Alexander Popp, Isabelle Weindl, Jan Philipp Dietrich, Susanne Rolinski, Lena Scheiffele, Christoph Schmitz, and Hermann Lotze-Campen. 2012. “Current State and Future Scenarios of the Global Agricultural Nitrogen Cycle.” Biogeosciences Discuss. 9 (3): 2755–2821. https://doi.org/10.5194/bgd-9-2755-2012.
IPCC. 2006. “2006 IPCC Guidelines for National Greenhouse Gas Inventories.” Edited by H. S. Eggleston, L. Buendia, K. Miwa, T. Ngara, and K. Tanabe. IGES, Japan: National Greenhouse Gas Inventories Programme.